Maple 2018. 2 Integration Test Results
on the problems in "6 Hyperbolic functions/6.7 Miscellaneous"
Test results for the 276 problems in "6.7.1 Hyperbolic functions.txt"
Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(2+3 x)^{2}}{1+2 \tanh (2+3 x)^{2}} d x
$$

Optimal(type 3, 16 leaves, 2 steps):

$$
\frac{\arctan (\sqrt{2} \tanh (2+3 x)) \sqrt{2}}{6}
$$

Result(type 3, 155 leaves):

$$
\frac{\sqrt{6} \arctan \left(\frac{2 \tanh \left(1+\frac{3 x}{2}\right)}{2 \sqrt{3}-2 \sqrt{2}}\right)}{3(2 \sqrt{3}-2 \sqrt{2})}-\frac{2 \arctan \left(\frac{2 \tanh \left(1+\frac{3 x}{2}\right)}{2 \sqrt{3}-2 \sqrt{2}}\right)}{3(2 \sqrt{3}-2 \sqrt{2})}-\frac{\sqrt{6} \arctan \left(\frac{2 \tanh \left(1+\frac{3 x}{2}\right)}{2 \sqrt{3}+2 \sqrt{2}}\right)}{3(2 \sqrt{3}+2 \sqrt{2})}-\frac{2 \arctan \left(\frac{2 \tanh \left(1+\frac{3 x}{2}\right)}{2 \sqrt{3}+2 \sqrt{2})}\right.}{3(2 \sqrt{3}+2 \sqrt{2})}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(2+3 x)^{2}}{1-2 \operatorname{coth}(2+3 x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 17 leaves, 2 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{2} \tanh (2+3 x)}{2}\right) \sqrt{2}}{6}
$$

Result(type 3, 101 leaves):

$$
-\frac{\sqrt{2} \ln \left(\frac{\tanh \left(1+\frac{3 x}{2}\right)^{2}+\tanh \left(1+\frac{3 x}{2}\right) \sqrt{2}+1}{\tanh \left(1+\frac{3 x}{2}\right)^{2}-\tanh \left(1+\frac{3 x}{2}\right) \sqrt{2}+1}\right)}{24}+\frac{\sqrt{2} \ln \left(\frac{\tanh \left(1+\frac{3 x}{2}\right)^{2}-\tanh \left(1+\frac{3 x}{2}\right) \sqrt{2}+1}{\tanh \left(1+\frac{3 x}{2}\right)^{2}+\tanh \left(1+\frac{3 x}{2}\right) \sqrt{2}+1}\right)}{24}
$$

Problem 4: Unable to integrate problem.

$$
\int \cosh (b x+a)^{3} \sinh (b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 3, 39 leaves, 3 steps):

$$
\frac{\sinh (b x+a)^{1+n}}{b(1+n)}+\frac{\sinh (b x+a)^{3+n}}{b(3+n)}
$$

Result(type 8, 19 leaves):

$$
\int \cosh (b x+a)^{3} \sinh (b x+a)^{n} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)^{7 / 2}}{\cosh (b x+a)^{7 / 2}} d x
$$

Optimal(type 3, 88 leaves, 6 steps):

$$
-\frac{\arctan \left(\frac{\sqrt{\cosh (b x+a)}}{\sqrt{\sinh (b x+a)}}\right)}{b}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{\cosh (b x+a)}}{\sqrt{\sinh (b x+a)}}\right)}{b}-\frac{2 \sinh (b x+a)^{5 / 2}}{5 b \cosh (b x+a)^{5 / 2}}-\frac{2 \sqrt{\sinh (b x+a)}}{b \sqrt{\cosh (b x+a)}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\sinh (b x+a)^{7 / 2}}{\cosh (b x+a)^{7 / 2}} d x
$$

Problem 18: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)^{7 / 2}}{\sinh (b x+a)^{7 / 2}} d x
$$

Optimal(type 3, 88 leaves, 6 steps):

Result(type 8, 19 leaves):

$$
\int \frac{\cosh (b x+a)^{7 / 2}}{\sinh (b x+a)^{7 / 2}} \mathrm{~d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\sinh (b x+a)^{4 / 3}}{\cosh (b x+a)^{4 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 197 leaves, 12 steps):
$\frac{\operatorname{arctanh}\left(\frac{\cosh (b x+a)^{1 / 3}}{\sinh (b x+a)^{1 / 3}}\right)}{b}-\frac{\ln \left(1+\frac{\cosh (b x+a)^{2 / 3}}{\sinh (b x+a)^{2 / 3}}-\frac{\cosh (b x+a)^{1 / 3}}{\sinh (b x+a)^{1 / 3}}\right)}{4 b}+\frac{\ln \left(1+\frac{\cosh (b x+a)^{2 / 3}}{\sinh (b x+a)^{2 / 3}}+\frac{\cosh (b x+a)^{1 / 3}}{\sinh (b x+a)^{1 / 3}}\right)}{4 b}$

$$
-\frac{3 \sinh (b x+a)^{1 / 3}}{b \cosh (b x+a)^{1 / 3}}+\frac{\arctan \left(\frac{\left(1-\frac{2 \cosh (b x+a)^{1 / 3}}{\sinh (b x+a)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}-\frac{\arctan \left(\frac{\left(1+\frac{2 \cosh (b x+a)^{1 / 3}}{\sinh (b x+a)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\sinh (b x+a)^{4 / 3}}{\cosh (b x+a)^{4 / 3}} \mathrm{~d} x
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)^{4 / 3}}{\sinh (b x+a)^{4 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 197 leaves, 12 steps):
$\frac{\operatorname{arctanh}\left(\frac{\sinh (b x+a)^{1 / 3}}{\cosh (b x+a)^{1 / 3}}\right)}{b}-\frac{\ln \left(1-\frac{\sinh (b x+a)^{1 / 3}}{\cosh (b x+a)^{1 / 3}}+\frac{\sinh (b x+a)^{2 / 3}}{\cosh (b x+a)^{2 / 3}}\right)}{4 b}+\frac{\ln \left(1+\frac{\sinh (b x+a)^{1 / 3}}{\cosh (b x+a)^{1 / 3}}+\frac{\sinh (b x+a)^{2 / 3}}{\cosh (b x+a)^{2 / 3}}\right)}{4 b}$

$$
-\frac{3 \cosh (b x+a)^{1 / 3}}{b \sinh (b x+a)^{1 / 3}}+\frac{\arctan \left(\frac{\left(1-\frac{2 \sinh (b x+a)^{1 / 3}}{\cosh (b x+a)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}-\frac{\arctan \left(\frac{\left(1+\frac{2 \sinh (b x+a)^{1 / 3}}{\cosh (b x+a)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\cosh (b x+a)^{4 / 3}}{\sinh (b x+a)^{4 / 3}} d x
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)^{5 / 3}}{\sinh (b x+a)^{5 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 124 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\ln \left(1-\frac{\sinh (b x+a)^{2 / 3}}{\cosh (b x+a)^{2 / 3}}\right)}{2 b}+\frac{\ln \left(1+\frac{\sinh (b x+a)^{2 / 3}}{\cosh (b x+a)^{2 / 3}}+\frac{\sinh (b x+a)^{4 / 3}}{\cosh (b x+a)^{4 / 3}}\right)}{4 b}-\frac{3 \cosh (b x+a)^{2 / 3}}{2 b \sinh (b x+a)^{2 / 3}} \\
& -\frac{\arctan \left(\frac{\left(1+\frac{2 \sinh (b x+a)^{2 / 3}}{\cosh (b x+a)^{2 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}
\end{aligned}
$$

[^0]$$
\int \frac{\cosh (b x+a)^{5 / 3}}{\sinh (b x+a)^{5 / 3}} \mathrm{~d} x
$$

Problem 22: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)^{7 / 3}}{\sinh (b x+a)^{7 / 3}} d x
$$

Optimal(type 3, 124 leaves, 9 steps):
$-\frac{\ln \left(1-\frac{\cosh (b x+a)^{2 / 3}}{\sinh (b x+a)^{2 / 3}}\right)}{2 b}+\frac{\ln \left(1+\frac{\cosh (b x+a)^{4 / 3}}{\sinh (b x+a)^{4 / 3}}+\frac{\cosh (b x+a)^{2 / 3}}{\sinh (b x+a)^{2 / 3}}\right)}{4 b}-\frac{3 \cosh (b x+a)^{4 / 3}}{4 b \sinh (b x+a)^{4 / 3}}$
$-\frac{\arctan \left(\frac{\left(1+\frac{2 \cosh (b x+a)^{2 / 3}}{\sinh (b x+a)^{2 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 b}$
Result(type 8, 19 leaves):

$$
\int \frac{\cosh (b x+a)^{7 / 3}}{\sinh (b x+a)^{7 / 3}} \mathrm{~d} x
$$

Problem 26: Unable to integrate problem.

$$
\int \operatorname{sech}(b x+a)^{4} \sqrt{\tanh (b x+a)} \mathrm{d} x
$$

Optimal(type 3, 27 leaves, 3 steps):

$$
\frac{2 \tanh (b x+a)^{3 / 2}}{3 b}-\frac{2 \tanh (b x+a)^{7 / 2}}{7 b}
$$

Result(type 8, 19 leaves):

$$
\int \operatorname{sech}(b x+a)^{4} \sqrt{\tanh (b x+a)} \mathrm{d} x
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(b x+a)^{4} \tanh (b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 3, 40 leaves, 3 steps):

$$
\frac{\tanh (b x+a)^{1+n}}{b(1+n)}-\frac{\tanh (b x+a)^{3+n}}{b(3+n)}
$$

Result(type 3, 534 leaves):
$\frac{1}{b(1+n)(3+n)\left(1+\mathrm{e}^{2 b x+2 a}\right)^{3}}\left(2\left(\mathrm{e}^{6 b x+6 a}+2 n \mathrm{e}^{4 b x+4 a}+3 \mathrm{e}^{4 b x+4 a}-2 n \mathrm{e}^{2 b x+2 a}-3 \mathrm{e}^{2 b x+2 a}\right.\right.$
-1)
$\mathrm{e}^{-\frac{1}{2}\left(n\left(\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{3} \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)\right) \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\mathrm{e}^{2 b x+2 a}}\right) \pi\right.\right.}$
$+\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\mathrm{e}^{2 b x+2 a}}\right) \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{2} \pi$
$+\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{b x+a}-1\right)\right) \pi+\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{3} \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}{1+\mathrm{e}^{2 b x+2 a}}\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{b x+a}\right.\right.$
-1)) $\left.\left.\left.\pi+2 \ln \left(1+\mathrm{e}^{2 b x+2 a}\right)-2 \ln \left(\mathrm{e}^{b x+a}-1\right)-2 \ln \left(\mathrm{e}^{b x+a}+1\right)\right)\right)\right)$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{sech}(x)^{8} \tanh (x)^{6} \mathrm{~d} x
$$

Optimal(type 3, 25 leaves, 3 steps):

$$
\frac{\tanh (x)^{7}}{7}-\frac{\tanh (x)^{9}}{3}+\frac{3 \tanh (x)^{11}}{11}-\frac{\tanh (x)^{13}}{13}
$$

Result(type 3, 71 leaves):
$-\frac{\sinh (x)^{5}}{8 \cosh (x)^{13}}-\frac{\sinh (x)^{3}}{16 \cosh (x)^{13}}-\frac{\sinh (x)}{64 \cosh (x)^{13}}$
$+\frac{\left(\frac{1024}{3003}+\frac{\operatorname{sech}(x)^{12}}{13}+\frac{12 \operatorname{sech}(x)^{10}}{143}+\frac{40 \operatorname{sech}(x)^{8}}{429}+\frac{320 \operatorname{sech}(x)^{6}}{3003}+\frac{128 \operatorname{sech}(x)^{4}}{1001}+\frac{512 \operatorname{sech}(x)^{2}}{3003}\right) \tanh (x)}{64}$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(b x+a)^{3} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 27 leaves, 3 steps):

$$
-\frac{\operatorname{csch}(b x+a)^{3}}{3 b}-\frac{\operatorname{csch}(b x+a)^{5}}{5 b}
$$

Result(type 3, 67 leaves):

$$
\frac{-\frac{\cosh (b x+a)^{2}}{5 \sinh (b x+a)^{5}}-\frac{2 \cosh (b x+a)^{2}}{15 \sinh (b x+a)^{3}}+\frac{2 \cosh (b x+a)^{2}}{15 \sinh (b x+a)}-\frac{2 \sinh (b x+a)}{15}}{b}
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(b x+a)^{3} \operatorname{csch}(b x+a)^{n} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 3 steps):

$$
-\frac{\operatorname{csch}(b x+a)^{n}}{b n}-\frac{\operatorname{csch}(b x+a)^{2+n}}{b(2+n)}
$$

Result(type 3, 498 leaves):
$-\frac{1}{b n(2+n)\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}}\left(\left(n \mathrm{e}^{4 b x+4 a}+2 \mathrm{e}^{4 b x+4 a}+2 n \mathrm{e}^{2 b x+2 a}-4 \mathrm{e}^{2 b x+2 a}+n\right.\right.$

$$
\begin{aligned}
& +2 \text {) } \\
& \mathrm{e}^{-\frac{1}{2}\left(n \left(\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right)^{3} \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{b x+a}-1}\right) \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{b x+a}+1}\right) \pi\right.\right.} \\
& +\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{b x+a}-1}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{b x+a}+1}\right) \pi-\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}+a+1\right)\left(\mathrm{e}^{b x+a}-1\right)}\right)^{2} \pi \\
& +\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}}{\left(\mathrm{e}^{b x+a}-1\right)\left(\mathrm{e}^{b x+a}+1\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I} \mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}+1\right)\left(\mathrm{e}^{b x+a}-1\right)}\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{b x+a}\right) \pi+\mathrm{I} \operatorname{csgn}\left(\frac{\mathrm{I}\left(\frac{\mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}+1\right)\left(\mathrm{e}^{b x+a}-1\right)}\right)^{3} \pi}{}\right. \\
& \left.\left.\left.-\operatorname{Icsgn}\left(\frac{\mathrm{I} \mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}+1\right)\left(\mathrm{e}^{b x+a}-1\right)}\right)^{2} \operatorname{csgn}\left(\mathrm{I}^{b x+a}\right) \pi+2 \ln \left(\mathrm{e}^{b x+a}-1\right)-2 \ln \left(\mathrm{e}^{b x+a}\right)+2 \ln \left(\mathrm{e}^{b x+a}+1\right)-2 \ln (2)\right)\right)\right)
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.
$\int \operatorname{coth}(x)^{2} \operatorname{csch}(x)^{4} \mathrm{~d} x$
Optimal(type 3, 13 leaves, 3 steps):

$$
\frac{\operatorname{coth}(x)^{3}}{3}-\frac{\operatorname{coth}(x)^{5}}{5}
$$

Result(type 3, 27 leaves):

$$
-\frac{\cosh (x)}{4 \sinh (x)^{5}}-\frac{\left(-\frac{8}{15}-\frac{\operatorname{csch}(x)^{4}}{5}+\frac{4 \operatorname{csch}(x)^{2}}{15}\right) \operatorname{coth}(x)}{4}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(x)^{n} \operatorname{csch}(x)^{4} \mathrm{~d} x
$$

Optimal (type 3, 26 leaves, 3 steps):

$$
\frac{\operatorname{coth}(x)^{1+n}}{1+n}-\frac{\operatorname{coth}(x)^{3+n}}{3+n}
$$

Result (type 3, 370 leaves):
$-\frac{1}{(1+n)(3+n)\left(\mathrm{e}^{2 x}-1\right)^{3}}\left(2\left(-\mathrm{e}^{6 x}+2 n \mathrm{e}^{4 x}+3 \mathrm{e}^{4 x}+2 n \mathrm{e}^{2 x}+3 \mathrm{e}^{2 x}\right.\right.$
-1)
$e^{-\frac{1}{2}\left(n\left(I \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{1+\mathrm{e}^{x}}\right)^{3}-\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{1+\mathrm{e}^{x}}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\mathrm{e}^{x}}\right)-\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{1+\mathrm{e}^{x}}\right)^{2} \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)\right)+\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{1+\mathrm{e}^{x}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{1+\mathrm{e}^{x}}\right) \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)\right)\right.\right.}$
$-I \pi \operatorname{csgn}\left(\frac{I\left(e^{2 x}+1\right)}{1+e^{x}}\right) \operatorname{csgn}\left(\frac{I\left(e^{2 x}+1\right)}{\left(e^{x}-1\right)\left(1+\mathrm{e}^{x}\right)}\right)^{2}+I \pi \operatorname{csgn}\left(\frac{I\left(e^{2 x}+1\right)}{1+\mathrm{e}^{x}}\right) \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{x}-1\right)\left(1+\mathrm{e}^{x}\right)}\right) \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{x}-1}\right)+\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{x}-1\right)\left(1+\mathrm{e}^{x}\right)}\right)^{3}$
$\left.\left.\left.-\mathrm{I} \pi \operatorname{csgn}\left(\frac{\mathrm{I}\left(\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{x}-1\right)\left(1+\mathrm{e}^{x}\right)}\right)^{2} \operatorname{csgn}\left(\frac{\mathrm{I}}{\mathrm{e}^{x}-1}\right)+2 \ln \left(\mathrm{e}^{x}-1\right)-2 \ln \left(\mathrm{e}^{2 x}+1\right)+2 \ln \left(1+\mathrm{e}^{x}\right)\right)\right)\right)$

Problem 41: Result more than twice size of optimal antiderivative.

$$
\int-\operatorname{csch}(b x-c) \operatorname{csch}(b x+a) \mathrm{d} x
$$

Optimal(type 3, 36 leaves, 3 steps):

$$
-\frac{\operatorname{csch}(a+c) \ln (-\sinh (b x-c))}{b}+\frac{\operatorname{csch}(a+c) \ln (\sinh (b x+a))}{b}
$$

Result(type 3, 76 leaves):

$$
-\frac{2 \ln \left(-\mathrm{e}^{2 a+2 c}+\mathrm{e}^{2 b x+2 a}\right) \mathrm{e}^{a+c}}{\left(\mathrm{e}^{2 a+2 c}-1\right) b}+\frac{2 \ln \left(\mathrm{e}^{2 b x+2 a}-1\right) \mathrm{e}^{a+c}}{\left(\mathrm{e}^{2 a+2 c}-1\right) b}
$$

Problem 42: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(b x+c)^{2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 46 leaves, 6 steps):
$-\frac{\operatorname{arctanh}(\cosh (b x+c)) \cosh (a-c)}{b}+\frac{\cosh (b x+a)}{b}-\frac{\operatorname{csch}(b x+c) \sinh (a-c)}{b}$
Result(type 3, 196 leaves):

$$
\begin{aligned}
& \frac{\mathrm{e}^{b x+a}}{2 b}+\frac{\mathrm{e}^{-b x-a}}{2 b}+\frac{\mathrm{e}^{b x+a}\left(\mathrm{e}^{2 c}-\mathrm{e}^{2 a}\right)}{b\left(\mathrm{e}^{2 b x+2 a+2 c}-\mathrm{e}^{2 a}\right)}+\frac{\ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}+\frac{\ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}-\frac{\ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b} \\
& \quad-\frac{\ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}
\end{aligned}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(b x+c)^{3} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 69 leaves, 9 steps):

$$
-\frac{\cosh (a-c) \operatorname{csch}(b x+c)}{b}-\frac{3 \operatorname{arctanh}(\cosh (b x+c)) \sinh (a-c)}{2 b}-\frac{\operatorname{coth}(b x+c) \operatorname{csch}(b x+c) \sinh (a-c)}{2 b}+\frac{\sinh (b x+a)}{b}
$$

Result(type 3, 229 leaves):

$$
\begin{aligned}
& \frac{\mathrm{e}^{b x+a}}{2 b}-\frac{\mathrm{e}^{-b x-a}}{2 b}-\frac{\mathrm{e}^{b x+a}\left(\mathrm{e}^{2 b x+2 a+4 c}+3 \mathrm{e}^{2 b x+4 a+2 c}-3 \mathrm{e}^{2 a+2 c}-\mathrm{e}^{4 a}\right)}{2 b\left(\mathrm{e}^{2 b x+2 a+2 c}-\mathrm{e}^{2 a}\right)^{2}}-\frac{3 \ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{4 b}+\frac{3 \ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{4 b} \\
& \quad+\frac{3 \ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{4 b}-\frac{3 \ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{4 b}
\end{aligned}
$$

Problem 44: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{csch}(b x+c) \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 26 leaves, 3 steps):

$$
x \cosh (a-c)+\frac{\ln (\sinh (b x+c)) \sinh (a-c)}{b}
$$

Result(type 3, 149 leaves):

$$
x \mathrm{e}^{a-c}+\mathrm{e}^{-a-c} \mathrm{e}^{2 c} x-\mathrm{e}^{-a-c} \mathrm{e}^{2 a} x+\frac{\mathrm{e}^{-a-c} \mathrm{e}^{2 c} a}{b}-\frac{\mathrm{e}^{-a-c} \mathrm{e}^{2 a} a}{b}-\frac{\ln \left(\mathrm{e}^{2 b x+2 a}-\mathrm{e}^{2 a-2 c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}+\frac{\ln \left(\mathrm{e}^{2 b x+2 a}-\mathrm{e}^{2 a-2 c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \cosh (b x+a) \tanh (b x+c) \mathrm{d} x
$$

Optimal(type 3, 29 leaves, 3 steps):

```
\frac{\operatorname{cosh}(bx+a)}{b}-\frac{\operatorname{arctan(\operatorname{sinh}(bx+c))\operatorname{sinh}(a-c)}}{b}
```

Result(type 3, 166 leaves):

$$
\begin{aligned}
& \frac{\mathrm{e}^{b x+a}}{2 b}+\frac{\mathrm{e}^{-b x-a}}{2 b}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}+\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c}\left(\mathrm{e}^{c}\right)^{2}}{2 b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}+\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c}\left(\mathrm{e}^{a}\right)^{2}}{2 b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}-\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c}\left(\mathrm{e}^{c}\right)^{2}}{2 b} \\
& \quad+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}-\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c}\left(\mathrm{e}^{a}\right)^{2}}{2 b}
\end{aligned}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \cosh (b x+a) \tanh (b x+c)^{2} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 6 steps):

$$
-\frac{\arctan (\sinh (b x+c)) \cosh (a-c)}{b}+\frac{\operatorname{sech}(b x+c) \sinh (a-c)}{b}+\frac{\sinh (b x+a)}{b}
$$

Result(type 3, 207 leaves):
$\frac{\mathrm{e}^{b x+a}}{2 b}-\frac{\mathrm{e}^{-b x-a}}{2 b}-\frac{\mathrm{e}^{b x+a}\left(\mathrm{e}^{2 c}-\mathrm{e}^{2 a}\right)}{b\left(\mathrm{e}^{2 b x+2 a+2 c}+\mathrm{e}^{2 a}\right)}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}-\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}-\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}+\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}$

$$
-\frac{\mathrm{I} \ln \left(\mathrm{e}^{b x+a}+\mathrm{Ie}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}
$$

Problem 47: Result more than twice size of optimal antiderivative.

$$
\int \cosh (b x+a) \operatorname{csch}(b x+c)^{2} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 4 steps):

$$
-\frac{\cosh (a-c) \operatorname{csch}(b x+c)}{b}-\frac{\operatorname{arctanh}(\cosh (b x+c)) \sinh (a-c)}{b}
$$

Result(type 3, 170 leaves):
$-\frac{\mathrm{e}^{b x+a}\left(\mathrm{e}^{2 c}+\mathrm{e}^{2 a}\right)}{b\left(\mathrm{e}^{2 b x+2 a+2 c}-\mathrm{e}^{2 a}\right)}-\frac{\ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}+\frac{\ln \left(\mathrm{e}^{b x+a}-\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}+\frac{\ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 c}}{2 b}-\frac{\ln \left(\mathrm{e}^{b x+a}+\mathrm{e}^{a-c}\right) \mathrm{e}^{-a-c} \mathrm{e}^{2 a}}{2 b}$

Problem 49: Unable to integrate problem.
$\int \sinh (b x+a) \tanh (d x+c) \mathrm{d} x$
Optimal(type 5, 109 leaves, 6 steps):

$$
\frac{\mathrm{e}^{-b x-a}}{2 b}+\frac{\mathrm{e}^{b x+a}}{2 b}-\frac{\mathrm{e}^{-b x-a} \text { hypergeom }\left(\left[1,-\frac{b}{2 d}\right],\left[1-\frac{b}{2 d}\right],-\mathrm{e}^{2 d x+2 c}\right)}{b}-\frac{\mathrm{e}^{b x+a} \operatorname{hypergeom}\left(\left[1, \frac{b}{2 d}\right],\left[1+\frac{b}{2 d}\right],-\mathrm{e}^{2 d x+2 c}\right)}{b}
$$

Result(type 8, 59 leaves):

$$
\frac{\mathrm{e}^{b x+a}}{2 b}+\frac{1}{2 b \mathrm{e}^{b x+a}}+\int-\frac{\left(\mathrm{e}^{b x+a}\right)^{2}-1}{\mathrm{e}^{b x+a}\left(\left(\mathrm{e}^{d x+c}\right)^{2}+1\right)} \mathrm{d} x
$$

Problem 50: Unable to integrate problem.

$$
\int \cosh (b x+a) \operatorname{coth}(d x+c) \mathrm{d} x
$$

Optimal(type 5, 104 leaves, 6 steps):

$$
-\frac{\mathrm{e}^{-b x-a}}{2 b}+\frac{\mathrm{e}^{b x+a}}{2 b}+\frac{\mathrm{e}^{-b x-a} \text { hypergeom }\left(\left[1,-\frac{b}{2 d}\right],\left[1-\frac{b}{2 d}\right], \mathrm{e}^{2 d x+2 c}\right)}{b}-\frac{\mathrm{e}^{b x+a} \operatorname{hypergeom}\left(\left[1, \frac{b}{2 d}\right],\left[1+\frac{b}{2 d}\right], \mathrm{e}^{2 d x+2 c}\right)}{b}
$$

Result(type 8, 58 leaves):

$$
\frac{\mathrm{e}^{b x+a}}{2 b}-\frac{1}{2 b \mathrm{e}^{b x+a}}+\int \frac{\left(\mathrm{e}^{b x+a}\right)^{2}+1}{\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right) \mathrm{e}^{b x+a}} \mathrm{~d} x
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int \sinh (x) \tanh (2 x) \mathrm{d} x
$$

Optimal(type 3, 15 leaves, 4 steps):

$$
\sinh (x)-\frac{\arctan (\sinh (x) \sqrt{2}) \sqrt{2}}{2}
$$

Result(type 3, 53 leaves):

$$
\frac{\mathrm{e}^{x}}{2}-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{I} \sqrt{2} \ln \left(\mathrm{e}^{2 x}-\mathrm{I} \sqrt{2} \mathrm{e}^{x}-1\right)}{4}-\frac{\mathrm{I} \sqrt{2} \ln \left(\mathrm{e}^{2 x}+\mathrm{I} \sqrt{2} \mathrm{e}^{x}-1\right)}{4}
$$

Problem 53: Unable to integrate problem.

$$
\int \sinh (x) \tanh (n x) \mathrm{d} x
$$

Optimal(type 5, 67 leaves, 6 steps):

$$
\frac{1}{2 \mathrm{e}^{x}}+\frac{\mathrm{e}^{x}}{2}-\frac{\operatorname{hypergeom}\left(\left[1,-\frac{1}{2 n}\right],\left[1-\frac{1}{2 n}\right],-\mathrm{e}^{2 n x}\right)}{\mathrm{e}^{x}}-\mathrm{e}^{x} \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\mathrm{e}^{2 n x}\right)
$$

Result(type 8, 35 leaves):

$$
\frac{\mathrm{e}^{x}}{2}+\frac{1}{2 \mathrm{e}^{x}}+\int-\frac{\left(\mathrm{e}^{x}\right)^{2}-1}{\mathrm{e}^{x}\left(\left(\mathrm{e}^{n x}\right)^{2}+1\right)} \mathrm{d} x
$$

Problem 54: Result more than twice size of optimal antiderivative.
$\int \operatorname{coth}(3 x) \sinh (x) d x$
Optimal(type 3, 16 leaves, 3 steps):

$$
\sinh (x)-\frac{\arctan \left(\frac{2 \sinh (x) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

Result (type 3, 50 leaves):

$$
-\frac{1}{1+\tanh \left(\frac{x}{2}\right)}-\frac{\sqrt{3} \arctan \left(\frac{\tanh \left(\frac{x}{2}\right) \sqrt{3}}{3}\right)}{3}-\frac{1}{\tanh \left(\frac{x}{2}\right)-1}-\frac{\sqrt{3} \arctan \left(\tanh \left(\frac{x}{2}\right) \sqrt{3}\right)}{3}
$$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \operatorname{coth}(4 x) \sinh (x) d x
$$

Optimal(type 3, 20 leaves, 6 steps):

$$
-\frac{\arctan (\sinh (x))}{4}+\sinh (x)-\frac{\arctan (\sinh (x) \sqrt{2}) \sqrt{2}}{4}
$$

Result(type 3, 142 leaves):

Problem 56: Result more than twice size of optimal antiderivative.
$\int \operatorname{csch}(3 x) \sinh (x) d x$
Optimal(type 3, 13 leaves, 2 steps):

Result(type 3, 39 leaves):

$$
\frac{\mathrm{I} \sqrt{3} \ln \left(\mathrm{e}^{2 x}+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}-\frac{\mathrm{I} \sqrt{3} \ln \left(\mathrm{e}^{2 x}+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{6}
$$

Problem 57: Result more than twice size of optimal antiderivative.
$\int \operatorname{csch}(6 x) \sinh (x) d x$
Optimal(type 3, 26 leaves, 7 steps):

$$
\frac{\arctan (\sinh (x))}{6}+\frac{\arctan (2 \sinh (x))}{6}-\frac{\arctan \left(\frac{2 \sinh (x) \sqrt{3}}{3}\right) \sqrt{3}}{6}
$$

Result(type 3, 91 leaves):

$$
\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}+\mathrm{I}\right)}{6}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{x}-\mathrm{I}\right)}{6}+\frac{\mathrm{I} \sqrt{3} \ln \left(\mathrm{e}^{2 x}-\mathrm{I} \sqrt{3} \mathrm{e}^{x}-1\right)}{12}-\frac{\mathrm{I} \sqrt{3} \ln \left(\mathrm{e}^{2 x}+\mathrm{I} \sqrt{3} \mathrm{e}^{x}-1\right)}{12}+\frac{\mathrm{I} \ln \left(\mathrm{e}^{2 x}+\mathrm{I} \mathrm{e}^{x}-1\right)}{12}-\frac{\mathrm{I} \ln \left(\mathrm{e}^{2 x}-\mathrm{I} \mathrm{e}^{x}-1\right)}{12}
$$

Problem 64: Result more than twice size of optimal antiderivative.

$$
\int \cosh (x) \operatorname{coth}(6 x) \mathrm{d} x
$$

Optimal(type 3, 28 leaves, 7 steps):

$$
-\frac{\operatorname{arctanh}(\cosh (x))}{6}-\frac{\operatorname{arctanh}(2 \cosh (x))}{6}+\cosh (x)-\frac{\operatorname{arctanh}\left(\frac{2 \cosh (x) \sqrt{3}}{3}\right) \sqrt{3}}{6}
$$

Result(type 3, 86 leaves):

$$
\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}-\frac{\ln \left(1+\mathrm{e}^{x}\right)}{6}+\frac{\ln \left(\mathrm{e}^{x}-1\right)}{6}+\frac{\sqrt{3} \ln \left(\mathrm{e}^{2 x}-\sqrt{3} \mathrm{e}^{x}+1\right)}{12}-\frac{\sqrt{3} \ln \left(\mathrm{e}^{2 x}+\sqrt{3} \mathrm{e}^{x}+1\right)}{12}+\frac{\ln \left(\mathrm{e}^{2 x}-\mathrm{e}^{x}+1\right)}{12}-\frac{\ln \left(\mathrm{e}^{2 x}+\mathrm{e}^{x}+1\right)}{12}
$$

Problem 65: Unable to integrate problem.

$$
\int \cosh (x) \operatorname{coth}(n x) \mathrm{d} x
$$

Optimal(type 5, 62 leaves, 6 steps):

$$
-\frac{1}{2 \mathrm{e}^{x}}+\frac{\mathrm{e}^{x}}{2}+\frac{\text { hypergeom }\left(\left[1,-\frac{1}{2 n}\right],\left[1-\frac{1}{2 n}\right], \mathrm{e}^{2 n x}\right)}{\mathrm{e}^{x}}-\mathrm{e}^{x} \text { hypergeom }\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right], \mathrm{e}^{2 n x}\right)
$$

Result(type 8, 34 leaves):

$$
\frac{\mathrm{e}^{x}}{2}-\frac{1}{2 \mathrm{e}^{x}}+\int \frac{\left(\mathrm{e}^{x}\right)^{2}+1}{\left(\left(\mathrm{e}^{n x}\right)^{2}-1\right) \mathrm{e}^{x}} \mathrm{~d} x
$$

Problem 66: Result is not expressed in closed-form.
$\int \cosh (x) \operatorname{sech}(4 x) d x$
Optimal(type 3, 49 leaves, 4 steps):

$$
\frac{\arctan \left(\frac{2 \sinh (x)}{\sqrt{2-\sqrt{2}}}\right)}{2 \sqrt{4-2 \sqrt{2}}}-\frac{\arctan \left(\frac{2 \sinh (x)}{\sqrt{2+\sqrt{2}}}\right)}{2 \sqrt{4+2 \sqrt{2}}}
$$

Result(type 7, 39 leaves):

$$
2\left(\sum_{-R=\operatorname{RootOf}\left(32768_{-} Z^{4}+512 _Z^{2}+1\right)}{ }^{-} R \ln \left(\mathrm{e}^{2 x}+\left(-4096 __{-}^{3}-48 __{-} R\right) \mathrm{e}^{x}-1\right)\right)
$$

Problem 67: Result is not expressed in closed-form.
$\int \cosh (x) \operatorname{sech}(5 x) d x$
Optimal(type 3, 49 leaves, 4 steps):

$$
-\frac{\arctan (\sqrt{5-2 \sqrt{5}} \tanh (x)) \sqrt{10-2 \sqrt{5}}}{10}+\frac{\arctan (\sqrt{5+2 \sqrt{5}} \tanh (x)) \sqrt{10+2 \sqrt{5}}}{10}
$$

Result(type 7, 40 leaves):

$$
2\left(\sum_{-R=R o o t O f\left(32000_{-} Z^{4}+400_{-} Z^{2}+1\right)^{-}} R \ln \left(-4000_{-} R^{3}+200_{-} R^{2}+\mathrm{e}^{2 x}-30_{-} R+1\right)\right)
$$

Problem 68: Result more than twice size of optimal antiderivative.
$\int \cosh (x) \operatorname{csch}(4 x) d x$
Optimal(type 3, 18 leaves, 4 steps):

$$
-\frac{\operatorname{arctanh}(\cosh (x))}{4}+\frac{\operatorname{arctanh}(\cosh (x) \sqrt{2}) \sqrt{2}}{4}
$$

Result(type 3, 52 leaves):

$$
-\frac{\ln \left(1+\mathrm{e}^{x}\right)}{4}+\frac{\ln \left(\mathrm{e}^{x}-1\right)}{4}+\frac{\ln \left(1+\mathrm{e}^{2 x}+\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{8}-\frac{\ln \left(1+\mathrm{e}^{2 x}-\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{8}
$$

Problem 69: Unable to integrate problem.

$$
\int x^{m} \cosh (b x+a) \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 70 leaves, 5 steps):

$$
\frac{2^{-3-m} \mathrm{e}^{2 a} x^{m} \Gamma(1+m,-2 b x)}{b(-b x)^{m}}+\frac{2^{-3-m} x^{m} \Gamma(1+m, 2 b x)}{b \mathrm{e}^{2 a}(b x)^{m}}
$$

Result(type 8, 18 leaves):

$$
\int x^{m} \cosh (b x+a) \sinh (b x+a) \mathrm{d} x
$$

Problem 71: Unable to integrate problem.

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a) d x
$$

Optimal(type 4, 124 leaves, 8 steps):

$$
\frac{3^{-1-m} \mathrm{e}^{3 a} x^{m} \Gamma(1+m,-3 b x)}{8 b(-b x)^{m}}+\frac{\mathrm{e}^{a} x^{m} \Gamma(1+m,-b x)}{8 b(-b x)^{m}}+\frac{x^{m} \Gamma(1+m, b x)}{8 b \mathrm{e}^{a}(b x)^{m}}+\frac{3^{-1-m} x^{m} \Gamma(1+m, 3 b x)}{8 b \mathrm{e}^{3 a}(b x)^{m}}
$$

Result(type 8, 20 leaves):

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a) \mathrm{d} x
$$

Problem 75: Result more than twice size of optimal antiderivative.
$\int x^{3} \cosh (b x+a) \sinh (b x+a)^{2} \mathrm{~d} x$
Optimal(type 3, 103 leaves, 7 steps):
$\frac{14 \cosh (b x+a)}{9 b^{4}}+\frac{2 x^{2} \cosh (b x+a)}{3 b^{2}}-\frac{2 \cosh (b x+a)^{3}}{27 b^{4}}-\frac{4 x \sinh (b x+a)}{3 b^{3}}-\frac{x^{2} \cosh (b x+a) \sinh (b x+a)^{2}}{3 b^{2}}+\frac{2 x \sinh (b x+a)^{3}}{9 b^{3}}$
$+\frac{x^{3} \sinh (b x+a)^{3}}{3 b}$
Result(type 3, 333 leaves):
$\frac{1}{b^{4}}\left(\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{(b x+a)^{3} \sinh (b x+a)}{3}-\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{2(b x+a)^{2} \cosh (b x+a)}{3}\right.$
$+\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}-\frac{14(b x+a) \sinh (b x+a)}{9}-\frac{2 \cosh (b x+a) \sinh (b x+a)^{2}}{27}+\frac{40 \cosh (b x+a)}{27}$
$-3 a\left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}+\frac{4(b x+a) \cosh (b x+a)}{9}\right.$
$\left.+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}-\frac{14 \sinh (b x+a)}{27}\right)+3 a^{2}\left(\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{(b x+a) \sinh (b x+a)}{3}\right.$
$\left.\left.-\frac{\cosh (b x+a) \sinh (b x+a)^{2}}{9}+\frac{2 \cosh (b x+a)}{9}\right)-a^{3}\left(\frac{\cosh (b x+a)^{2} \sinh (b x+a)}{3}-\frac{\sinh (b x+a)}{3}\right)\right)$

[^1]$$
\int x^{2} \cosh (b x+a) \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 4 steps):

$$
\frac{4 x \cosh (b x+a)}{9 b^{2}}-\frac{4 \sinh (b x+a)}{9 b^{3}}-\frac{2 x \cosh (b x+a) \sinh (b x+a)^{2}}{9 b^{2}}+\frac{2 \sinh (b x+a)^{3}}{27 b^{3}}+\frac{x^{2} \sinh (b x+a)^{3}}{3 b}
$$

Result(type 3, 192 leaves):
$\frac{1}{b^{3}}\left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}+\frac{4(b x+a) \cosh (b x+a)}{9}\right.$

$$
\begin{aligned}
& +\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}-\frac{14 \sinh (b x+a)}{27}-2 a\left(\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{(b x+a) \sinh (b x+a)}{3}\right. \\
& \left.\left.-\frac{\cosh (b x+a) \sinh (b x+a)^{2}}{9}+\frac{2 \cosh (b x+a)}{9}\right)+a^{2}\left(\frac{\cosh (b x+a)^{2} \sinh (b x+a)}{3}-\frac{\sinh (b x+a)}{3}\right)\right)
\end{aligned}
$$

Problem 78: Unable to integrate problem.

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 87 leaves, 5 steps):

$$
-\frac{x^{1+m}}{8(1+m)}+\frac{\mathrm{e}^{4 a} x^{m} \Gamma(1+m,-4 b x)}{2^{6+2 m} b(-b x)^{m}}-\frac{x^{m} \Gamma(1+m, 4 b x)}{2^{6+2 m} b \mathrm{e}^{4 a}(b x)^{m}}
$$

Result(type 8, 22 leaves):

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Problem 80: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \cosh (b x+a)^{3} \sinh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 3, 178 leaves, 14 steps):
$\frac{3 \cosh (b x+a)}{4 b^{4}}+\frac{3 x^{2} \cosh (b x+a)}{8 b^{2}}-\frac{\cosh (3 b x+3 a)}{216 b^{4}}-\frac{x^{2} \cosh (3 b x+3 a)}{48 b^{2}}-\frac{3 \cosh (5 b x+5 a)}{5000 b^{4}}-\frac{3 x^{2} \cosh (5 b x+5 a)}{400 b^{2}}-\frac{3 x \sinh (b x+a)}{4 b^{3}}$

$$
-\frac{x^{3} \sinh (b x+a)}{8 b}+\frac{x \sinh (3 b x+3 a)}{72 b^{3}}+\frac{x^{3} \sinh (3 b x+3 a)}{48 b}+\frac{3 x \sinh (5 b x+5 a)}{1000 b^{3}}+\frac{x^{3} \sinh (5 b x+5 a)}{80 b}
$$

Result(type 3, 533 leaves):
$\frac{1}{b^{4}}\left(\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{4}}{5}-\frac{2(b x+a)^{3} \sinh (b x+a)}{15}-\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{15}\right.$
$-\frac{3(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)^{3}}{25}-\frac{4(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{75}+\frac{26(b x+a)^{2} \cosh (b x+a)}{75}$

$$
\begin{aligned}
& +\frac{6(b x+a) \sinh (b x+a) \cosh (b x+a)^{4}}{125}-\frac{856(b x+a) \sinh (b x+a)}{1125}+\frac{22(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{1125} \\
& -\frac{6 \cosh (b x+a)^{3} \sinh (b x+a)^{2}}{625}-\frac{272 \cosh (b x+a) \sinh (b x+a)^{2}}{16875}+\frac{12568 \cosh (b x+a)}{16875}-3 a\left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{4}}{5}\right. \\
& -\frac{2(b x+a)^{2} \sinh (b x+a)}{15}-\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{15}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)^{3}}{25} \\
& -\frac{8(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{225}+\frac{52(b x+a) \cosh (b x+a)}{225}+\frac{2 \cosh (b x+a)^{4} \sinh (b x+a)}{125}-\frac{856 \sinh (b x+a)}{3375} \\
& \left.+\frac{22 \cosh (b x+a)^{2} \sinh (b x+a)}{3375}\right)+3 a^{2}\left(\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{4}}{5}-\frac{2(b x+a) \sinh (b x+a)}{15}\right. \\
& \left.-\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{15}-\frac{\cosh (b x+a)^{3} \sinh (b x+a)^{2}}{25}-\frac{4 \cosh (b x+a) \sinh (b x+a)^{2}}{225}+\frac{26 \cosh (b x+a)}{225}\right) \\
& \left.\left.-a^{3}\left(\frac{\cosh (b x+a)^{4} \sinh (b x+a)}{5}-\frac{225}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)\right)\right) \\
& \\
& -\left(\frac{2}{5}\right)
\end{aligned}
$$

Problem 82: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cosh (b x+a) \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 89 leaves, 4 steps):

$$
-\frac{3 x^{2}}{32 b}+\frac{3 x \cosh (b x+a) \sinh (b x+a)}{16 b^{2}}-\frac{3 \sinh (b x+a)^{2}}{32 b^{3}}-\frac{x \cosh (b x+a) \sinh (b x+a)^{3}}{8 b^{2}}+\frac{\sinh (b x+a)^{4}}{32 b^{3}}+\frac{x^{2} \sinh (b x+a)^{4}}{4 b}
$$

Result(type 3, 236 leaves):
$\frac{1}{b^{3}}\left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{4}-\frac{(b x+a)^{2} \cosh (b x+a)^{2}}{4}-\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{3}}{8}\right.$

$$
+\frac{5(b x+a) \cosh (b x+a) \sinh (b x+a)}{16}+\frac{5(b x+a)^{2}}{32}+\frac{\cosh (b x+a)^{2} \sinh (b x+a)^{2}}{32}-\frac{\cosh (b x+a)^{2}}{8}
$$

$$
-2 a\left(\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{4}-\frac{\cosh (b x+a)^{2}(b x+a)}{4}-\frac{\sinh (b x+a) \cosh (b x+a)^{3}}{16}+\frac{5 \cosh (b x+a) \sinh (b x+a)}{32}+\frac{5 b x}{32}\right.
$$

$$
\left.\left.+\frac{5 a}{32}\right)+a^{2}\left(\frac{\cosh (b x+a)^{2} \sinh (b x+a)^{2}}{4}-\frac{\cosh (b x+a)^{2}}{4}\right)\right)
$$

Problem 84: Unable to integrate problem.

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 195 leaves, 11 steps):
$\frac{5^{-1-m} \mathrm{e}^{5 a} x^{m} \Gamma(1+m,-5 b x)}{32 b(-b x)^{m}}-\frac{3^{-1-m} \mathrm{e}^{3 a} x^{m} \Gamma(1+m,-3 b x)}{32 b(-b x)^{m}}-\frac{\mathrm{e}^{a} x^{m} \Gamma(1+m,-b x)}{16 b(-b x)^{m}}-\frac{x^{m} \Gamma(1+m, b x)}{16 b \mathrm{e}^{a}(b x)^{m}}-\frac{3^{-1-m} x^{m} \Gamma(1+m, 3 b x)}{32 b \mathrm{e}^{3 a}(b x)^{m}}$

$$
+\frac{5^{-1-m} x^{m} \Gamma(1+m, 5 b x)}{32 b \mathrm{e}^{5 a}(b x)^{m}}
$$

Result(type 8, 22 leaves):

$$
\int x^{m} \cosh (b x+a)^{2} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Problem 85: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cosh (b x+a)^{3} \sinh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 93 leaves, 8 steps):

$$
-\frac{3 \cosh (2 b x+2 a)}{128 b^{3}}-\frac{3 x^{2} \cosh (2 b x+2 a)}{64 b}+\frac{\cosh (6 b x+6 a)}{3456 b^{3}}+\frac{x^{2} \cosh (6 b x+6 a)}{192 b}+\frac{3 x \sinh (2 b x+2 a)}{64 b^{2}}-\frac{x \sinh (6 b x+6 a)}{576 b^{2}}
$$

Result(type 3, 357 leaves):
$\frac{1}{b^{3}}\left(\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)^{4}}{6}-\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{12}-\frac{(b x+a)^{2} \cosh (b x+a)^{2}}{12}\right.$

$$
-\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{5}}{18}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{3}}{18}+\frac{\cosh (b x+a)^{4} \sinh (b x+a)^{2}}{108}-\frac{\cosh (b x+a)^{2} \sinh (b x+a)^{2}}{216}
$$

$$
-\frac{5 \cosh (b x+a)^{2}}{108}+\frac{(b x+a) \cosh (b x+a) \sinh (b x+a)}{12}+\frac{(b x+a)^{2}}{24}-2 a\left(\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)^{4}}{6}\right.
$$

$-\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{12}-\frac{\cosh (b x+a)^{2}(b x+a)}{12}-\frac{\sinh (b x+a) \cosh (b x+a)^{5}}{36}+\frac{\sinh (b x+a) \cosh (b x+a)^{3}}{36}$
$\left.\left.+\frac{\cosh (b x+a) \sinh (b x+a)}{24}+\frac{b x}{24}+\frac{a}{24}\right)+a^{2}\left(\frac{\cosh (b x+a)^{4} \sinh (b x+a)^{2}}{6}-\frac{\cosh (b x+a)^{2} \sinh (b x+a)^{2}}{12}-\frac{\cosh (b x+a)^{2}}{12}\right)\right)$

Problem 92: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{sech}(b x+a)^{2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 62 leaves, 6 steps):

$$
\frac{4 x \arctan \left(\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{2 \mathrm{I} \operatorname{polylog}\left(2,-\mathrm{Ie}^{b x+a}\right)}{b^{3}}+\frac{2 \mathrm{I} \operatorname{polylog}\left(2, \mathrm{Ie}^{b x+a}\right)}{b^{3}}-\frac{x^{2} \operatorname{sech}(b x+a)}{b}
$$

Result(type 4, 153 leaves):

$$
\begin{aligned}
& -\frac{2 x^{2} \mathrm{e}^{b x+a}}{b\left(1+\mathrm{e}^{2 b x+2 a}\right)}-\frac{2 \mathrm{I} \ln \left(1+\mathrm{Ie}^{b x+a}\right) x}{b^{2}}-\frac{2 \mathrm{I} \ln \left(1+\mathrm{I}^{b x+a}\right) a}{b^{3}}+\frac{2 \mathrm{I} \ln \left(1-\mathrm{Ie}^{b x+a}\right) x}{b^{2}}+\frac{2 \mathrm{I} \ln \left(1-\mathrm{Ie}^{b x+a}\right) a}{b^{3}}-\frac{2 \mathrm{Idilog}\left(1+\mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{3}} \\
& \quad+\frac{2 \mathrm{I} \operatorname{dilog}\left(1-\mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{4 a \arctan \left(\mathrm{e}^{b x+a}\right)}{b^{3}}
\end{aligned}
$$

Problem 109: Result more than twice size of optimal antiderivative.

$$
\int x \cosh (b x+a)^{2} \operatorname{csch}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 63 leaves, 8 steps):

$$
-\frac{2 x \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}+\frac{x \cosh (b x+a)}{b}-\frac{\operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{\sinh (b x+a)}{b^{2}}
$$

Result(type 4, 138 leaves):

$$
\begin{aligned}
& \frac{(b x-1) \mathrm{e}^{b x+a}}{2 b^{2}}+\frac{(b x+1) \mathrm{e}^{-b x-a}}{2 b^{2}}-\frac{\ln \left(\mathrm{e}^{b x+a}+1\right) x}{b}-\frac{\ln \left(\mathrm{e}^{b x+a}+1\right) a}{b^{2}}-\frac{\operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) x}{b}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) a}{b^{2}} \\
& \quad+\frac{\operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{2 a \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{2}}
\end{aligned}
$$

Problem 115: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \cosh (b x+a)^{2} \operatorname{csch}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 83 leaves, 7 steps):

$$
-\frac{x^{3}}{b}+\frac{x^{4}}{4}-\frac{x^{3} \operatorname{coth}(b x+a)}{b}+\frac{3 x^{2} \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{3 x \operatorname{poly} \log \left(2, \mathrm{e}^{2 b x+2 a}\right)}{b^{3}}-\frac{3 \operatorname{poly} \log \left(3, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{4}}
$$

Result(type 4, 197 leaves):
$\frac{x^{4}}{4}-\frac{2 x^{3}}{\left(\mathrm{e}^{2 b x+2 a}-1\right) b}-\frac{6 a^{2} \ln \left(\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{3 a^{2} \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{4}}-\frac{2 x^{3}}{b}+\frac{6 a^{2} x}{b^{3}}+\frac{4 a^{3}}{b^{4}}+\frac{3 \ln \left(\mathrm{e}^{b x+a}+1\right) x^{2}}{b^{2}}+\frac{6 x \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{3}}$
$-\frac{6 \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{3 \ln \left(-\mathrm{e}^{b x+a}+1\right) x^{2}}{b^{2}}-\frac{3 \ln \left(-\mathrm{e}^{b x+a}+1\right) a^{2}}{b^{4}}+\frac{6 x \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{4}}$

Problem 124: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \cosh (b x+a)^{3} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 161 leaves, 13 steps):
$-\frac{3 x^{2}}{2 b^{2}}+\frac{x^{3}}{2 b}-\frac{x^{4}}{4}-\frac{3 x^{2} \operatorname{coth}(b x+a)}{2 b^{2}}-\frac{x^{3} \operatorname{coth}(b x+a)^{2}}{2 b}+\frac{3 x \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b^{3}}+\frac{x^{3} \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b}+\frac{3 \operatorname{polylog}\left(2, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{4}}$

$$
+\frac{3 x^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{2}}-\frac{3 x \operatorname{polylog}\left(3, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{3}}+\frac{3 \operatorname{poly} \log \left(4, \mathrm{e}^{2 b x+2 a}\right)}{4 b^{4}}
$$

Result(type 4, 374 leaves):

$$
\begin{aligned}
& -\frac{6 a x}{b^{3}}+\frac{6 a \ln \left(\mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{3 a \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{4}}-\frac{a^{3} \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{4}}-\frac{3 x^{2}}{b^{2}}+\frac{3 \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{3 \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}} \\
& +\frac{6 \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{x^{4}}{4}+\frac{3 x^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{3 x^{2} \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{6 x \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 x \operatorname{polylog}\left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{3 a^{2}}{b^{4}} \\
& +\frac{3 \ln \left(\mathrm{e}^{b x+a}+1\right) x}{b^{3}}+\frac{3 \ln \left(-\mathrm{e}^{b x+a}+1\right) x}{b^{3}}+\frac{3 \ln \left(-\mathrm{e}^{b x+a}+1\right) a}{b^{4}}+\frac{\ln \left(\mathrm{e}^{b x+a}+1\right) x^{3}}{b}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) x^{3}}{b}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) a^{3}}{b^{4}} \\
& \\
& -\frac{x^{2}\left(2 \mathrm{e}^{2 b x+2 a} b x+3 \mathrm{e}^{2 b x+2 a}-3\right)}{b^{2}\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}}-\frac{3 a^{4}}{2 b^{4}}-\frac{2 a^{3} x}{b^{3}}+\frac{2 a^{3} \ln \left(\mathrm{e}^{b x+a}\right)}{b^{4}}
\end{aligned}
$$

Problem 125: Result more than twice size of optimal antiderivative.

$$
\int x \cosh (b x+a)^{3} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 72 leaves, 7 steps):

$$
\frac{x}{2 b}-\frac{x^{2}}{2}-\frac{\operatorname{coth}(b x+a)}{2 b^{2}}-\frac{x \operatorname{coth}(b x+a)^{2}}{2 b}+\frac{x \ln \left(1-\mathrm{e}^{2 b x+2 a}\right)}{b}+\frac{\operatorname{polylog}\left(2, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{2}}
$$

Result(type 4, 163 leaves):
$-\frac{x^{2}}{2}-\frac{2 \mathrm{e}^{2 b x+2 a} b x+\mathrm{e}^{2 b x+2 a}-1}{b^{2}\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}}-\frac{2 a x}{b}-\frac{a^{2}}{b^{2}}+\frac{\ln \left(\mathrm{e}^{b x+a}+1\right) x}{b}+\frac{\operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) x}{b}+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) a}{b^{2}}$

$$
+\frac{\operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{2 a \ln \left(\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{a \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{2}}
$$

Problem 128: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \operatorname{csch}(b x+a) \operatorname{sech}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 88 leaves, 8 steps):

$$
-\frac{2 x^{2} \operatorname{arctanh}\left(\mathrm{e}^{2 b x+2 a}\right)}{b}-\frac{x \operatorname{poly} \log \left(2,-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{x \operatorname{poly} \log \left(2, \mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{\operatorname{poly} \log \left(3,-\mathrm{e}^{2 b x+2 a}\right)}{2 b^{3}}-\frac{\operatorname{poly} \log \left(3, \mathrm{e}^{2 b x+2 a}\right)}{2 b^{3}}
$$

Result(type 4, 185 leaves):
$\frac{a^{2} \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{3}}-\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) a^{2}}{b^{3}}-\frac{x^{2} \ln \left(1+\mathrm{e}^{2 b x+2 a}\right)}{b}-\frac{x \operatorname{polylog}\left(2,-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}+\frac{\ln \left(\mathrm{e}^{b x+a}+1\right) x^{2}}{b}+\frac{2 x \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}$
$+\frac{\ln \left(-\mathrm{e}^{b x+a}+1\right) x^{2}}{b}+\frac{2 x \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\operatorname{poly} \log \left(3,-\mathrm{e}^{2 b x+2 a}\right)}{2 b^{3}}-\frac{2 \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{2 \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}$

Problem 131: Unable to integrate problem.

$$
\int x^{3} \operatorname{csch}(b x+a) \operatorname{sech}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 206 leaves, 21 steps):

$$
\begin{aligned}
& -\frac{6 x^{2} \arctan \left(\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{2 x^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{3 x^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{6 \mathrm{I} x \operatorname{poly} \log \left(2,-\mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 \mathrm{I} x \operatorname{poly} \log \left(2, \mathrm{I} \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{3 x^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}} \\
& \quad+\frac{6 x \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 \mathrm{I} \operatorname{poly} \log \left(3,-\mathrm{I}^{b x+a}\right)}{b^{4}}+\frac{6 \mathrm{I} \operatorname{poly} \log \left(3, \mathrm{Ie}^{b x+a}\right)}{b^{4}}-\frac{6 x \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}} \\
& \quad+\frac{6 \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{x^{3} \operatorname{sech}(b x+a)}{b}
\end{aligned}
$$

Result(type 8, 95 leaves):

$$
\frac{2 x^{3} \mathrm{e}^{b x+a}}{b\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)}+8\left(\int \frac{x^{2} \mathrm{e}^{b x+a}\left(\left(\mathrm{e}^{b x+a}\right)^{2} b x+b x-3\left(\mathrm{e}^{b x+a}\right)^{2}+3\right)}{4 b\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right)} \mathrm{d} x\right)
$$

Problem 139: Unable to integrate problem.

$$
\int x^{2} \operatorname{csch}(b x+a)^{3} \operatorname{sech}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 181 leaves, 29 steps):
$\frac{4 x \arctan \left(\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{3 x^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{\operatorname{arctanh}(\cosh (b x+a))}{b^{3}}-\frac{x \operatorname{csch}(b x+a)}{b^{2}}+\frac{3 x \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{2 \mathrm{I} \mathrm{polylog}\left(2,-\mathrm{Ie} \mathrm{e}^{b x+a}\right)}{b^{3}}$

$$
+\frac{2 \mathrm{I} \operatorname{poly} \log \left(2, \mathrm{I}^{b x+a}\right)}{b^{3}}-\frac{3 x \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{3 \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{3 \operatorname{polylog}\left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{3 x^{2} \operatorname{sech}(b x+a)}{2 b}
$$

$$
-\frac{x^{2} \operatorname{csch}(b x+a)^{2} \operatorname{sech}(b x+a)}{2 b}
$$

Result(type 8, 168 leaves):

$$
\begin{aligned}
& -\frac{x \mathrm{e}^{b x+a}\left(3\left(\mathrm{e}^{b x+a}\right)^{4} x b-2\left(\mathrm{e}^{b x+a}\right)^{2} b x+2\left(\mathrm{e}^{b x+a}\right)^{4}+3 b x-2\right)}{b^{2}\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right)^{2}\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)}+32\left(\int\right. \\
& \left.-\frac{\mathrm{e}^{b x+a}\left(3 b^{2} x^{2}\left(\mathrm{e}^{b x+a}\right)^{2}+3 b^{2} x^{2}-4\left(\mathrm{e}^{b x+a}\right)^{2} b x+4 b x-2\left(\mathrm{e}^{b x+a}\right)^{2}-2\right)}{32 b^{2}\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right)\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)} \mathrm{d} x\right)
\end{aligned}
$$

Problem 140: Result more than twice size of optimal antiderivative.
$\int x^{2} \operatorname{csch}(b x+a)^{3} \operatorname{sech}(b x+a)^{3} \mathrm{~d} x$
Optimal(type 4, 144 leaves, 10 steps):
$\frac{4 x^{2} \operatorname{arctanh}\left(\mathrm{e}^{2 b x+2 a}\right)}{b}-\frac{\operatorname{arctanh}(\cosh (2 b x+2 a))}{b^{3}}-\frac{2 x \operatorname{csch}(2 b x+2 a)}{b^{2}}-\frac{2 x^{2} \operatorname{coth}(2 b x+2 a) \operatorname{csch}(2 b x+2 a)}{b}+\frac{2 x \operatorname{polylog}\left(2,-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}$

$$
-\frac{2 x \operatorname{polylog}\left(2, \mathrm{e}^{2 b x+2 a}\right)}{b^{2}}-\frac{\operatorname{polylog}\left(3,-\mathrm{e}^{2 b x+2 a}\right)}{b^{3}}+\frac{\operatorname{polylog}\left(3, \mathrm{e}^{2 b x+2 a}\right)}{b^{3}}
$$

Result(type 4, 298 leaves):

$$
\begin{aligned}
&-\frac{4 x \mathrm{e}^{2 b x+2 a}\left(\mathrm{e}^{4 b x+4 a} x b+\mathrm{e}^{4 b x+4 a}+b x-1\right)}{b^{2}\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}\left(1+\mathrm{e}^{2 b x+2 a}\right)^{2}}+\frac{2 \ln \left(-\mathrm{e}^{b x+a}+1\right) a^{2}}{b^{3}}-\frac{2 a^{2} \ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{3}}-\frac{2 \ln \left(-\mathrm{e}^{b x+a}+1\right) x^{2}}{b}-\frac{4 x \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}} \\
&+\frac{2 x^{2} \ln \left(1+\mathrm{e}^{2 b x+2 a}\right)}{b}+\frac{2 x \operatorname{poly} \log \left(2,-\mathrm{e}^{2 b x+2 a}\right)}{b^{2}}-\frac{2 \ln \left(\mathrm{e}^{b x+a}+1\right) x^{2}}{b}-\frac{4 x \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{4 \operatorname{polylog}\left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}} \\
&+\frac{4 \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{\operatorname{poly} \log \left(3,-\mathrm{e}^{2 b x+2 a}\right)}{b^{3}}+\frac{\ln \left(\mathrm{e}^{b x+a}+1\right)}{b^{3}}+\frac{\ln \left(\mathrm{e}^{b x+a}-1\right)}{b^{3}}-\frac{\ln \left(1+\mathrm{e}^{2 b x+2 a}\right)}{b^{3}}
\end{aligned}
$$

Problem 141: Unable to integrate problem.

$$
\int x \cosh (b x+a)^{5 / 2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 99 leaves, 4 steps):
$\frac{2 x \cosh (b x+a)^{7 / 2}}{7 b}+\frac{20 \mathrm{I} \sqrt{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{a}{2}+\frac{b x}{2}\right), \sqrt{2}\right)}{147 \cosh \left(\frac{a}{2}+\frac{b x}{2}\right) b^{2}}-\frac{4 \cosh (b x+a)^{5 / 2} \sinh (b x+a)}{49 b^{2}}$

$-\frac{20 \sinh (b x+a) \sqrt{\cosh (b x+a)}}{147 b^{2}}$
 $147 b^{2}$

Result(type 8, 18 leaves):

$$
\int x \cosh (b x+a)^{5 / 2} \sinh (b x+a) d x
$$

Problem 142: Unable to integrate problem.

$$
\int x \sinh (b x+a) \sqrt{\cosh (b x+a)} \mathrm{d} x
$$

Optimal(type 4, 80 leaves, 3 steps):

$$
\frac{2 x \cosh (b x+a)^{3 / 2}}{3 b}+\frac{4 \mathrm{I} \sqrt{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{a}{2}+\frac{b x}{2}\right), \sqrt{2}\right)}{9 \cosh \left(\frac{a}{2}+\frac{b x}{2}\right) b^{2}}-\frac{4 \sinh (b x+a) \sqrt{\cosh (b x+a)}}{9 b^{2}}
$$

Result(type 8, 18 leaves):

$$
\int x \sinh (b x+a) \sqrt{\cosh (b x+a)} \mathrm{d} x
$$

Problem 143: Unable to integrate problem.

$$
\int x \operatorname{sech}(b x+a)^{9 / 2} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 115 leaves, 5 steps):
$-\frac{2 x \operatorname{sech}(b x+a)^{7 / 2}}{7 b}+\frac{4 \operatorname{sech}(b x+a)^{5 / 2} \sinh (b x+a)}{35 b^{2}}+\frac{12 \sinh (b x+a) \sqrt{\operatorname{sech}(b x+a)}}{35 b^{2}}$

$$
+\frac{12 \mathrm{I} \sqrt{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{a}{2}+\frac{b x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (b x+a)} \sqrt{\operatorname{sech}(b x+a)}}{35 \cosh \left(\frac{a}{2}+\frac{b x}{2}\right) b^{2}}
$$

Result(type 8, 18 leaves):

$$
\int x \operatorname{sech}(b x+a)^{9 / 2} \sinh (b x+a) \mathrm{d} x
$$

Problem 144: Result more than twice size of optimal antiderivative.

$$
\int x \sqrt{\operatorname{sech}(b x+a)} \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 77 leaves, 3 steps):

$$
\frac{2 x}{b \sqrt{\operatorname{sech}(b x+a)}}+\frac{4 \mathrm{I} \sqrt{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticE}\left(\mathrm{I} \sinh \left(\frac{a}{2}+\frac{b x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (b x+a)} \sqrt{\operatorname{sech}(b x+a)}}{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right) b^{2}}
$$

Result(type 4, 249 leaves):

$$
\begin{gathered}
\frac{(b x-2)\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{\mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}\right)^{2}+1}}}{b^{2} \mathrm{e}^{b x+a}}-\frac{1}{b^{2} \mathrm{e}^{b x+a}}\left(2 \left(-\frac{2\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right)}{\sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right) \mathrm{e}^{b x+a}}}\right.\right. \\
\left.+\frac{\mathrm{I} \sqrt{-\mathrm{I}\left(\mathrm{e}^{b x+a}+\mathrm{I}\right)} \sqrt{2} \sqrt{\mathrm{I}\left(\mathrm{e}^{b x+a}-\mathrm{I}\right)} \sqrt{\mathrm{I} \mathrm{e}^{b x+a}}\left(-2 \mathrm{IEllipticE}\left(\sqrt{-\mathrm{I}\left(\mathrm{e}^{b x+a}+\mathrm{I}\right)}, \frac{\sqrt{2}}{2}\right)+\mathrm{IEllipticF}\left(\sqrt{-\mathrm{I}\left(\mathrm{e}^{b x+a}+\mathrm{I}\right)}, \frac{\sqrt{2}}{2}\right)\right)}{\sqrt{\left(\mathrm{e}^{b x+a}\right)^{3}+\mathrm{e}^{b x+a}}}\right)
\end{gathered}
$$

$$
\left.\sqrt{2} \sqrt{\frac{\mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}\right)^{2}+1}} \sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}+1\right) \mathrm{e}^{b x+a}}\right)
$$

Problem 145: Unable to integrate problem.

$$
\int \frac{x \sinh (b x+a)}{\sqrt{\operatorname{sech}(b x+a)}} \mathrm{d} x
$$

Optimal(type 4, 96 leaves, 4 steps):

$$
\frac{2 x}{3 b \operatorname{sech}(b x+a)^{3 / 2}}-\frac{4 \sinh (b x+a)}{9 b^{2} \sqrt{\operatorname{sech}(b x+a)}}+\frac{4 \mathrm{I} \sqrt{\cosh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{a}{2}+\frac{b x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (b x+a)} \sqrt{\operatorname{sech}(b x+a)}}{9 \cosh \left(\frac{a}{2}+\frac{b x}{2}\right) b^{2}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x \sinh (b x+a)}{\sqrt{\operatorname{sech}(b x+a)}} \mathrm{d} x
$$

Problem 146: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \cosh (b x+a)}{\sqrt{\sinh (b x+a)}} \mathrm{d} x
$$

Optimal(type 4, 92 leaves, 3 steps):

$$
\frac{2 x \sqrt{\sinh (b x+a)}}{b}-\frac{4 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right)^{2}} \text { EllipticE }\left(\cos \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right), \sqrt{2}\right) \sqrt{\sinh (b x+a)}}{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right) b^{2} \sqrt{\mathrm{I} \sinh (b x+a)}}
$$

Result(type 4, 228 leaves):

$$
\begin{aligned}
& \frac{(b x-2)\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \sqrt{2}}{b^{2} \sqrt{\frac{\left(\mathrm{e}^{b x+a}\right)^{2}-1}{\mathrm{e}^{b x+a}}} \mathrm{e}^{b x+a}}+\frac{1}{b^{2} \sqrt{\frac{\left(\mathrm{e}^{b x+a}\right)^{2}-1}{\mathrm{e}^{b x+a}}} \mathrm{e}^{b x+a}}\left(2 \left(\frac{2\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right)}{\sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \mathrm{e}^{b x+a}}}\right.\right. \\
& \left.\left.\quad-\frac{\sqrt{\mathrm{e}^{b x+a}+1} \sqrt{-2 \mathrm{e}^{b x+a}+2} \sqrt{-\mathrm{e}^{b x+a}}\left(-2 \operatorname{EllipticE}\left(\sqrt{\mathrm{e}^{b x+a}+1}, \frac{\sqrt{2}}{2}\right)+\operatorname{EllipticF}\left(\sqrt{\mathrm{e}^{b x+a}+1}, \frac{\sqrt{2}}{2}\right)\right)}{\sqrt{\left(\mathrm{e}^{b x+a}\right)^{3}-\mathrm{e}^{b x+a}}}\right) \sqrt{2} \sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \mathrm{e}^{b x+a}}\right)
\end{aligned}
$$

Problem 147: Unable to integrate problem.

$$
\int x \cosh (b x+a) \operatorname{csch}(b x+a)^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 111 leaves, 4 steps):
$-\frac{4 \cosh (b x+a) \operatorname{csch}(b x+a)^{3 / 2}}{15 b^{2}}-\frac{2 x \operatorname{csch}(b x+a)^{5 / 2}}{5 b}$

$$
-\frac{4 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right), \sqrt{2}\right) \sqrt{\operatorname{csch}(b x+a)} \sqrt{\mathrm{I} \sinh (b x+a)}}{15 \sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right) b^{2}}
$$

Result (type 8, 18 leaves):

$$
\int x \cosh (b x+a) \operatorname{csch}(b x+a)^{7 / 2} \mathrm{~d} x
$$

Problem 148: Result more than twice size of optimal antiderivative.

$$
\int x \cosh (b x+a) \sqrt{\operatorname{csch}(b x+a)} \mathrm{d} x
$$

Optimal (type 4, 92 leaves, 3 steps):

$$
\frac{2 x}{b \sqrt{\operatorname{csch}(b x+a)}}-\frac{4 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cos \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right), \sqrt{2}\right)}{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right) b^{2} \sqrt{\operatorname{csch}(b x+a)} \sqrt{\mathrm{I} \sinh (b x+a)}}
$$

Result(type 4, 228 leaves):
$\frac{(b x-2)\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \sqrt{2} \sqrt{\frac{\mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}\right)^{2}-1}}}{b^{2} \mathrm{e}^{b x+a}}+\frac{1}{b^{2} \mathrm{e}^{b x+a}}\left(2\left(\frac{2\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right)}{\sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \mathrm{e}^{b x+a}}}\right.\right.$
$\left.-\frac{\sqrt{\mathrm{e}^{b x+a}+1} \sqrt{-2 \mathrm{e}^{b x+a}+2} \sqrt{-\mathrm{e}^{b x+a}}\left(-2 \operatorname{EllipticE}\left(\sqrt{\mathrm{e}^{b x+a}+1}, \frac{\sqrt{2}}{2}\right)+\operatorname{EllipticF}\left(\sqrt{\mathrm{e}^{b x+a}+1}, \frac{\sqrt{2}}{2}\right)\right)}{\sqrt{\left(\mathrm{e}^{b x+a}\right)^{3}-\mathrm{e}^{b x+a}}}\right)$
$\left.\sqrt{2} \sqrt{\frac{\mathrm{e}^{b x+a}}{\left(\mathrm{e}^{b x+a}\right)^{2}-1}} \sqrt{\left(\left(\mathrm{e}^{b x+a}\right)^{2}-1\right) \mathrm{e}^{b x+a}}\right)$

Problem 149: Unable to integrate problem.

$$
\int \frac{x \cosh (b x+a)}{\sqrt{\operatorname{csch}(b x+a)}} \mathrm{d} x
$$

Optimal(type 4, 111 leaves, 4 steps):
$\frac{2 x}{3 b \operatorname{csch}(b x+a)^{3 / 2}}-\frac{4 \cosh (b x+a)}{9 b^{2} \sqrt{\operatorname{csch}(b x+a)}}+\frac{4 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right), \sqrt{2}\right) \sqrt{\operatorname{csch}(b x+a)} \sqrt{\mathrm{I} \sinh (b x+a)}}{9 \sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right) b^{2}}$
Result (type 8, 18 leaves):

$$
\int \frac{x \cosh (b x+a)}{\sqrt{\operatorname{csch}(b x+a)}} \mathrm{d} x
$$

Problem 150: Unable to integrate problem.

$$
\int \frac{x \cosh (b x+a)}{\operatorname{csch}(b x+a)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 111 leaves, 4 steps):

$$
\frac{2 x}{5 b \operatorname{csch}(b x+a)^{5 / 2}}-\frac{4 \cosh (b x+a)}{25 b^{2} \operatorname{csch}(b x+a)^{3 / 2}}+\frac{12 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cos \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right), \sqrt{2}\right)}{25 \sin \left(\frac{\mathrm{I} a}{2}+\frac{\pi}{4}+\frac{\mathrm{I} b x}{2}\right) b^{2} \sqrt{\operatorname{csch}(b x+a)} \sqrt{\mathrm{I} \sinh (b x+a)}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x \cosh (b x+a)}{\operatorname{csch}(b x+a)^{3 / 2}} \mathrm{~d} x
$$

Problem 151: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{\sinh (x) \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 11 leaves, 3 steps):

$$
2 \operatorname{coth}(x) \sqrt{\sinh (x) \tanh (x)}
$$

Result(type 3, 41 leaves):

$$
\frac{\sqrt{2} \sqrt{\frac{\left(\mathrm{e}^{2 x}-1\right)^{2} \mathrm{e}^{-x}}{\mathrm{e}^{2 x}+1}}\left(\mathrm{e}^{2 x}+1\right)}{\mathrm{e}^{2 x}-1}
$$

Problem 152: Unable to integrate problem.

$$
\int(\sinh (x) \tanh (x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 23 leaves, 4 steps):

$$
\frac{8 \operatorname{csch}(x) \sqrt{\sinh (x) \tanh (x)}}{3}+\frac{2 \sinh (x) \sqrt{\sinh (x) \tanh (x)}}{3}
$$

Result(type 8, 9 leaves):

$$
\int(\sinh (x) \tanh (x))^{3 / 2} \mathrm{~d} x
$$

Problem 153: Result more than twice size of optimal antiderivative.

$$
\int \frac{b+c+\cosh (x)}{a-b \sinh (x)} d x
$$

Optimal(type 3, 47 leaves, 7 steps):

$$
-\frac{\ln (a-b \sinh (x))}{b}+\frac{2(b+c) \operatorname{arctanh}\left(\frac{b+a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}
$$

Result(type 3, 118 leaves):

$$
\begin{aligned}
& \frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{b}-\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}+2 b \tanh \left(\frac{x}{2}\right)-a\right)}{b}+\frac{2 b \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)+2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}+\frac{2 \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)+2 b}{2 \sqrt{a^{2}+b^{2}}}\right) c}{\sqrt{a^{2}+b^{2}}} \\
& \quad+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b}
\end{aligned}
$$

Problem 156: Maple result simpler than optimal antiderivative, IF it can be verified!
$\int \sqrt{a \cosh (x)+b \sinh (x)} \mathrm{d} x$
Optimal(type 4, 89 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right)^{2}} \operatorname{EllipticE}\left(\sin \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right), \sqrt{2}\right) \sqrt{a \cosh (x)+b \sinh (x)}}{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right) \sqrt{\frac{a \cosh (x)+b \sinh (x)}{\sqrt{a^{2}-b^{2}}}}}
$$

Result(type 3, 32 leaves):

$$
-\frac{\sqrt{a^{2}-b^{2}} \cosh (x)}{\sqrt{-\sinh (x) \sqrt{a^{2}-b^{2}}}}
$$

Problem 157: Maple result simpler than optimal antiderivative, IF it can be verified!

$$
\int \frac{1}{\sqrt{a \cosh (x)+b \sinh (x)}} \mathrm{d} x
$$

Optimal(type 4, 89 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right)^{2}} \operatorname{EllipticF}\left(\sin \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right), \sqrt{2}\right) \sqrt{\frac{a \cosh (x)+b \sinh (x)}{\sqrt{a^{2}-b^{2}}}}}{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (a,-\mathrm{I} b)}{2}\right) \sqrt{a \cosh (x)+b \sinh (x)}}
$$

Result(type 3, 96 leaves):

$$
\frac{\sqrt{-\sinh (x)^{3} \sqrt{a^{2}-b^{2}}} \arctan \left(\frac{\sqrt{\sinh (x) \sqrt{a^{2}-b^{2}}} \cosh (x)}{\sqrt{-\sinh (x)^{3} \sqrt{a^{2}-b^{2}}}}\right.}{\sqrt{\sinh (x) \sqrt{a^{2}-b^{2}}} \sinh (x) \sqrt{-\sinh (x) \sqrt{a^{2}-b^{2}}}}
$$

Problem 167: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a \operatorname{sech}(x)+b \tanh (x))^{3}} d x
$$

Optimal (type 3, 50 leaves, 4 steps):

$$
\frac{\ln (a+b \sinh (x))}{b^{3}}+\frac{-a^{2}-b^{2}}{2 b^{3}(a+b \sinh (x))^{2}}+\frac{2 a}{b^{3}(a+b \sinh (x))}
$$

Result(type 3, 240 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{b^{3}}+\frac{2 a \tanh \left(\frac{x}{2}\right)^{3}}{b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{3}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2} a}-\frac{6 \tanh \left(\frac{x}{2}\right)^{2}}{b\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2}} \\
& +\frac{2 b \tanh \left(\frac{x}{2}\right)^{2}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2} a^{2}}-\frac{2 a \tanh \left(\frac{x}{2}\right)}{b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2}}+\frac{2 \tanh \left(\frac{x}{2}\right)}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{2} a} \\
& \quad+\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)}{b^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b^{3}}
\end{aligned}
$$

[^2]$$
\int \frac{1}{(a \operatorname{sech}(x)+b \tanh (x))^{4}} \mathrm{~d} x
$$

Optimal(type 3, 135 leaves, 8 steps):

$$
\frac{x}{b^{4}}+\frac{a\left(2 a^{2}+3 b^{2}\right) \operatorname{arctanh}\left(\frac{b-a \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{b^{4}\left(a^{2}+b^{2}\right)^{3 / 2}}-\frac{\cosh (x)^{3}}{3 b(a+b \sinh (x))^{3}}+\frac{a \cosh (x)^{3}}{2 b\left(a^{2}+b^{2}\right)(a+b \sinh (x))^{2}}-\frac{\cosh (x)\left(2 a^{2}+2 b^{2}+a b \sinh (x)\right)}{2 b^{3}\left(a^{2}+b^{2}\right)(a+b \sinh (x))}
$$

Result(type 3, 971 leaves):

$$
\begin{aligned}
& \frac{2 b}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}+\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{b^{4}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b^{4}}+\frac{2 b \tanh \left(\frac{x}{2}\right)^{4}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)} \\
& -\frac{2 a \tanh \left(\frac{x}{2}\right)^{3}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}-\frac{2 a \tanh \left(\frac{x}{2}\right)^{2}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)} \\
& +\frac{14 b \tanh \left(\frac{x}{2}\right)}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}+\frac{\left.8 a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}{(a \tan }
\end{aligned}
$$

$$
+\frac{2 a^{4}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}+\frac{5 a^{2}}{3 b\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}-\frac{2 a^{3} \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{\left.2 \sqrt{a^{2}+b^{2}}\right)}\right.}{b^{4}\left(a^{2}+b^{2}\right)^{3 / 2}}
$$

$$
-\frac{3 a \operatorname{arctanh}\left(\frac{2 a \tanh \left(\frac{x}{2}\right)-2 b}{2 \sqrt{a^{2}+b^{2}}}\right)}{b^{2}\left(a^{2}+b^{2}\right)^{3 / 2}}+
$$

$$
+\frac{a^{3} \tanh \left(\frac{x}{2}\right)^{5}}{b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}+\frac{2 b^{2} \tanh \left(\frac{x}{2}\right)^{5}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3} a\left(a^{2}+b^{2}\right)}
$$

$$
+\frac{2 a^{4} \tanh \left(\frac{x}{2}\right)^{4}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}-\frac{3 a^{2} \tanh \left(\frac{x}{2}\right)^{4}}{b\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}
$$

$$
\begin{aligned}
& -\frac{4 b^{3} \tanh \left(\frac{x}{2}\right)^{4}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right) a^{2}}-\frac{12 a^{3} \tanh \left(\frac{x}{2}\right)^{3}}{b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)} \\
& +\frac{8 b^{2} \tanh \left(\frac{x}{2}\right)^{3}}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3} a\left(a^{2}+b^{2}\right)}+\frac{8 b^{4} \tanh \left(\frac{x}{2}\right)^{3}}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3} a^{3}\left(a^{2}+b^{2}\right)} \\
& -\frac{4 a^{4} \tanh \left(\frac{x}{2}\right)^{2}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}+\frac{16 a^{2} \tanh \left(\frac{x}{2}\right)^{2}}{b\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)} \\
& +\frac{4 b^{3} \tanh \left(\frac{x}{2}\right)^{2}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3} a^{2}\left(a^{2}+b^{2}\right)} \\
& +\frac{b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3}\left(a^{2}+b^{2}\right)}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{3} a\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

Problem 169: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a \operatorname{sech}(x)+b \tanh (x))^{5}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 4 steps):

$$
\frac{\ln (a+b \sinh (x))}{b^{5}}-\frac{\left(a^{2}+b^{2}\right)^{2}}{4 b^{5}(a+b \sinh (x))^{4}}+\frac{4 a\left(a^{2}+b^{2}\right)}{3 b^{5}(a+b \sinh (x))^{3}}+\frac{-3 a^{2}-b^{2}}{b^{5}(a+b \sinh (x))^{2}}+\frac{4 a}{b^{5}(a+b \sinh (x))}
$$

Result(type 3, 720 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{b^{5}}+\frac{2 a^{3} \tanh \left(\frac{x}{2}\right)^{7}}{b^{4}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}-\frac{2 \tanh \left(\frac{x}{2}\right)^{7}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a}-\frac{14 a^{2} \tanh \left(\frac{x}{2}\right)^{6}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}} \\
& +\frac{6 b \tanh \left(\frac{x}{2}\right)^{6}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{2}}-\frac{6 a^{3} \tanh \left(\frac{x}{2}\right)^{5}}{b^{4}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}+\frac{104 a \tanh \left(\frac{x}{2}\right)^{5}}{3 b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 \tanh \left(\frac{x}{2}\right)^{5}}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a}-\frac{8 b^{2} \tanh \left(\frac{x}{2}\right)^{5}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{3}}+\frac{28 a^{2} \tanh \left(\frac{x}{2}\right)^{4}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}} \\
& -\frac{100 \tanh \left(\frac{x}{2}\right)^{4}}{3 b\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}-\frac{28 b \tanh \left(\frac{x}{2}\right)^{4}}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{2}}+\frac{4 b^{3} \tanh \left(\frac{x}{2}\right)^{4}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{4}} \\
& +\frac{6 a^{3} \tanh \left(\frac{x}{2}\right)^{3}}{b^{4}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}-\frac{104 a \tanh \left(\frac{x}{2}\right)^{3}}{3 b^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{3}}{3\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a} \\
& +\frac{8 b^{2} \tanh \left(\frac{x}{2}\right)^{3}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{3}}-\frac{14 a^{2} \tanh \left(\frac{x}{2}\right)^{2}}{b^{3}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}+\frac{6 b \tanh \left(\frac{x}{2}\right)^{2}}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a^{2}} \\
& -\frac{2 a^{3} \tanh \left(\frac{x}{2}\right)}{b^{4}\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4}}+\frac{2 \tanh \left(\frac{x}{2}\right)}{\left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)^{4} a}+\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-2 b \tanh \left(\frac{x}{2}\right)-a\right)}{b^{5}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b^{5}}
\end{aligned}
$$

Problem 170: Result more than twice size of optimal antiderivative.

$$
\int(\operatorname{sech}(x)+\mathrm{I} \tanh (x))^{5} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 4 steps):

$$
\mathrm{I} \ln (\mathrm{I}+\sinh (x))-\frac{2 \mathrm{I}}{(1-\mathrm{I} \sinh (x))^{2}}+\frac{4 \mathrm{I}}{1-\mathrm{I} \sinh (x)}
$$

Result(type 3, 81 leaves):
$\frac{8\left(\frac{\operatorname{sech}(x)^{3}}{4}+\frac{3 \operatorname{sech}(x)}{8}\right) \tanh (x)}{3}+2 \arctan \left(\mathrm{e}^{x}\right)+\frac{15 \mathrm{I} \sinh (x)^{2}}{4 \cosh (x)^{4}}-\frac{5 \mathrm{I} \sinh (x)^{2}}{4 \cosh (x)^{2}}-\frac{5 \sinh (x)}{3 \cosh (x)^{4}}-\frac{5 \sinh (x)^{3}}{\cosh (x)^{4}}+\mathrm{I} \ln (\cosh (x))-\frac{\mathrm{I} \tanh (x)^{2}}{2}$
$-\frac{\mathrm{I} \tanh (x)^{4}}{4}$

Problem 172: Result more than twice size of optimal antiderivative.

Optimal(type 3, 9 leaves, 3 steps):

$$
\mathrm{I} \ln (\mathrm{I}+\sinh (x))
$$

Result(type 3, 32 leaves):

$$
2 \mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)-\mathrm{I} \ln \left(1+\tanh \left(\frac{x}{2}\right)\right)-\mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)
$$

Problem 174: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a \operatorname{coth}(x)+b \operatorname{csch}(x))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 4 steps):

$$
\frac{a^{2}-b^{2}}{2 a^{3}(b+a \cosh (x))^{2}}+\frac{2 b}{a^{3}(b+a \cosh (x))}+\frac{\ln (b+a \cosh (x))}{a^{3}}
$$

Result(type 3, 143 leaves):

$$
\begin{aligned}
& -\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{a^{3}}+\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}{a^{3}}+\frac{2}{(a-b)\left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)^{2}} \\
& +\frac{2 b}{a(a-b)\left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a^{2}\left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b+a+b\right)}
\end{aligned}
$$

Problem 175: Result more than twice size of optimal antiderivative.

$$
\int(\operatorname{coth}(x)+\operatorname{csch}(x))^{3} \mathrm{~d} x
$$

Optimal(type 3, 18 leaves, 4 steps):

$$
\frac{2}{1-\cosh (x)}+\ln (1-\cosh (x))
$$

Result (type 3, 38 leaves):

$$
\ln (\sinh (x))-\frac{\operatorname{coth}(x)^{2}}{2}-\frac{3 \cosh (x)}{\sinh (x)^{2}}+\operatorname{coth}(x) \operatorname{csch}(x)-2 \operatorname{arctanh}\left(\mathrm{e}^{x}\right)-\frac{3 \cosh (x)^{2}}{2 \sinh (x)^{2}}
$$

Problem 179: Result more than twice size of optimal antiderivative.

$$
\int(-\operatorname{coth}(x)+\operatorname{csch}(x))^{5} \mathrm{~d} x
$$

Optimal(type 3, 24 leaves, 4 steps):

$$
\frac{2}{(1+\cosh (x))^{2}}-\frac{4}{1+\cosh (x)}-\ln (1+\cosh (x))
$$

Result(type 3, 76 leaves):
$-\ln (\sinh (x))+\frac{\operatorname{coth}(x)^{2}}{2}+\frac{\operatorname{coth}(x)^{4}}{4}-\frac{5 \cosh (x)^{3}}{\sinh (x)^{4}}+\frac{5 \cosh (x)}{3 \sinh (x)^{4}}+\frac{8\left(-\frac{\operatorname{csch}(x)^{3}}{4}+\frac{3 \operatorname{csch}(x)}{8}\right) \operatorname{coth}(x)}{3}-2 \operatorname{arctanh}\left(\mathrm{e}^{x}\right)+\frac{15 \cosh (x)^{2}}{4 \sinh (x)^{4}}+\frac{5 \cosh (x)^{2}}{4 \sinh (x)^{2}}$

Problem 191: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{2}}{(a \cosh (x)+b \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 67 leaves, 4 steps):

$$
\frac{\left(a^{2}+b^{2}\right) x}{\left(a^{2}-b^{2}\right)^{2}}-\frac{2 a b \ln (a \cosh (x)+b \sinh (x))}{\left(a^{2}-b^{2}\right)^{2}}+\frac{b}{\left(a^{2}-b^{2}\right)(a+b \tanh (x))}
$$

Result(type 3, 148 leaves):

$$
\begin{gathered}
-\frac{2 b^{2} a \tanh \left(\frac{x}{2}\right)}{(a-b)^{2}(a+b)^{2}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)}+\frac{2 b^{4} \tanh \left(\frac{x}{2}\right)}{(a-b)^{2}(a+b)^{2} a\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)} \\
-\frac{2 b a \ln \left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)}{(a-b)^{2}(a+b)^{2}}+\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{(a-b)^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{(a+b)^{2}}
\end{gathered}
$$

Problem 193: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{3}}{(a \cosh (x)+b \sinh (x))^{3}} \mathrm{~d} x
$$

Optimal(type 3, 102 leaves, 5 steps):

$$
-\frac{b\left(3 a^{2}+b^{2}\right) x}{\left(a^{2}-b^{2}\right)^{3}}-\frac{a}{2\left(a^{2}-b^{2}\right)(b+a \operatorname{coth}(x))^{2}}+\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}(b+a \operatorname{coth}(x))}+\frac{a\left(a^{2}+3 b^{2}\right) \ln (a \cosh (x)+b \sinh (x))}{\left(a^{2}-b^{2}\right)^{3}}
$$

Result(type 3, 403 leaves):
$\frac{4 a^{4} b \tanh \left(\frac{x}{2}\right)^{3}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}}-\frac{4 a^{2} b^{3} \tanh \left(\frac{x}{2}\right)^{3}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}}$

$$
\begin{aligned}
& -\frac{2 a^{5} \tanh \left(\frac{x}{2}\right)^{2}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}}+\frac{12 a^{3} b^{2} \tanh \left(\frac{x}{2}\right)^{2}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}} \\
& -\frac{10 a \tanh \left(\frac{x}{2}\right)^{2} b^{4}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}}+\frac{4 a^{4} b \tanh \left(\frac{x}{2}\right)}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}} \\
& -\frac{4 a^{2} \tanh \left(\frac{x}{2}\right) b^{3}}{(a-b)^{3}(a+b)^{3}\left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)^{2}}+\frac{a^{3} \ln \left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right)}{(a-b)^{3}(a+b)^{3}} \\
& +\frac{3 a \ln \left(a+2 b \tanh \left(\frac{x}{2}\right)+a \tanh \left(\frac{x}{2}\right)^{2}\right) b^{2}}{(a-b)^{3}(a+b)^{3}}-\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{(a-b)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{(a+b)^{3}}
\end{aligned}
$$

Problem 199: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+C \sinh (x)}{b \cosh (x)+c \sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 76 leaves, 3 steps):

$$
-\frac{c C x}{b^{2}-c^{2}}+\frac{b C \ln (b \cosh (x)+c \sinh (x))}{b^{2}-c^{2}}+\frac{A \arctan \left(\frac{c \cosh (x)+b \sinh (x)}{\sqrt{b^{2}-c^{2}}}\right)}{\sqrt{b^{2}-c^{2}}}
$$

Result(type 3, 180 leaves):
$\frac{b C \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b+2 c \tanh \left(\frac{x}{2}\right)+b\right)}{(b-c)(b+c)}+\frac{2 \arctan \left(\frac{2 b \tanh \left(\frac{x}{2}\right)+2 c}{2 \sqrt{b^{2}-c^{2}}}\right) A b^{2}}{(b-c)(b+c) \sqrt{b^{2}-c^{2}}}-\frac{2 \arctan \left(\frac{2 b \tanh \left(\frac{x}{2}\right)+2 c}{2 \sqrt{b^{2}-c^{2}}}\right) A c^{2}}{(b-c)(b+c) \sqrt{b^{2}-c^{2}}}-\frac{2 C \ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{2 b-2 c}$

$$
-\frac{2 C \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 b+2 c}
$$

Problem 205: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+b \cosh (x)+c \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 85 leaves, 5 steps):

$$
-\frac{2 a \operatorname{arctanh}\left(\frac{c-(a-b) \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}+c^{2}}}\right)}{\left(a^{2}-b^{2}+c^{2}\right)^{3 / 2}}+\frac{-c \cosh (x)-b \sinh (x)}{\left(a^{2}-b^{2}+c^{2}\right)(a+b \cosh (x)+c \sinh (x))}
$$

Result(type 3, 190 leaves):

$$
-\frac{2\left(-\frac{\left(a b-b^{2}+c^{2}\right) \tanh \left(\frac{x}{2}\right)}{a^{3}-a^{2} b-a b^{2}+a c^{2}+b^{3}-c^{2} b}-\frac{a c}{a^{3}-a^{2} b-a b^{2}+a c^{2}+b^{3}-c^{2} b}\right)}{a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-2 c \tanh \left(\frac{x}{2}\right)-a-b}-\frac{2 a \arctan \left(\frac{2(a-b) \tanh \left(\frac{x}{2}\right)-2 c}{2 \sqrt{-a^{2}+b^{2}-c^{2}}}\right)}{\left(a^{2}-b^{2}+c^{2}\right) \sqrt{-a^{2}+b^{2}-c^{2}}}
$$

Problem 208: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{2}} d x
$$

Optimal(type 3, 91 leaves, 2 steps):

$$
\frac{c \cosh (x)+b \sinh (x)}{3 \sqrt{b^{2}-c^{2}}\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{2}}+\frac{-c-\sinh (x) \sqrt{b^{2}-c^{2}}}{3 c(c \cosh (x)+b \sinh (x)) \sqrt{b^{2}-c^{2}}}
$$

Result(type 3, 216 leaves):

$$
\frac{2\left(\sqrt{b^{2}-c^{2}}+b\right)\left(\frac{\left(\sqrt{b^{2}-c^{2}}+b\right) \tanh \left(\frac{x}{2}\right)^{2}}{c^{2}}+\frac{\left(2 b^{2}-c^{2}+2 \sqrt{b^{2}-c^{2}} b\right) \tanh \left(\frac{x}{2}\right)}{c^{3}}+\frac{2\left(2 \sqrt{b^{2}-c^{2}} b^{2}-\sqrt{b^{2}-c^{2}} c^{2}+2 b^{3}-2 c^{2} b\right)}{3 c^{4}}\right)}{c^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+\frac{2 \sqrt{(b-c)(b+c)} \tanh \left(\frac{x}{2}\right)}{c}+\frac{2 b \tanh \left(\frac{x}{2}\right)}{c}+\frac{2 \sqrt{(b-c)(b+c)} b}{c^{2}}+\frac{2 b^{2}}{c^{2}}-1\right)\left(\tanh \left(\frac{x}{2}\right)+\frac{\sqrt{(b-c)(b+c)}}{c}+\frac{b}{c}\right)}
$$

Problem 209: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{4}} d x
$$

Optimal(type 3, 176 leaves, 4 steps):

$$
\begin{aligned}
\frac{c \cosh (x)+b \sinh (x)}{7 \sqrt{b^{2}-c^{2}}\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{4}}+\frac{3(c \cosh (x)+b \sinh (x))}{35\left(b^{2}-c^{2}\right)\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{3}} \\
+\frac{2(c \cosh (x)+b \sinh (x))}{35\left(b^{2}-c^{2}\right)^{3 / 2}\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{2}}-\frac{2\left(c+\sinh (x) \sqrt{b^{2}-c^{2}}\right)}{35 c\left(b^{2}-c^{2}\right)^{3 / 2}(c \cosh (x)+b \sinh (x))}
\end{aligned}
$$

Result(type 3, 827 leaves):
$\sum_{2}\left(\frac{\left(8 \sqrt{b^{2}-c^{2}} b^{3}-4 \sqrt{b^{2}-c^{2}} b c^{2}+8 b^{4}-8 b^{2} c^{2}+c^{4}\right) \tanh \left(\frac{x}{2}\right)^{6}}{c^{2}}\right.$
$+\frac{3\left(16 \sqrt{b^{2}-c^{2}} b^{4}-12 \sqrt{b^{2}-c^{2}} b^{2} c^{2}+\sqrt{b^{2}-c^{2}} c^{4}+16 b^{5}-20 b^{3} c^{2}+5 c^{4} b\right) \tanh \left(\frac{x}{2}\right)^{5}}{c^{3}}$
$+\frac{2\left(80 \sqrt{b^{2}-c^{2}} b^{5}-84 \sqrt{b^{2}-c^{2}} b^{3} c^{2}+17 \sqrt{b^{2}-c^{2}} b c^{4}+80 b^{6}-124 b^{4} c^{2}+49 b^{2} c^{4}-3 c^{6}\right) \tanh \left(\frac{x}{2}\right)^{4}}{c^{4}}$
$+\frac{2\left(160 b^{7}-288 b^{5} c^{2}+150 b^{3} c^{4}-20 b c^{6}+160 \sqrt{b^{2}-c^{2}} b^{6}-208 \sqrt{b^{2}-c^{2}} b^{4} c^{2}+66 \sqrt{b^{2}-c^{2}} b^{2} c^{4}-3 \sqrt{b^{2}-c^{2}} c^{6}\right) \tanh \left(\frac{x}{2}\right)^{3}}{c^{5}}$
$+\frac{1}{5 c^{6}}\left(3\left(640 b^{7} \sqrt{b^{2}-c^{2}}-992 \sqrt{b^{2}-c^{2}} b^{5} c^{2}+440 \sqrt{b^{2}-c^{2}} b^{3} c^{4}-50 \sqrt{b^{2}-c^{2}} b c^{6}+640 b^{8}-1312 b^{6} c^{2}+856 b^{4} c^{4}-186 b^{2} c^{6}\right.\right.$
$\left.\left.+7 c^{8}\right) \tanh \left(\frac{x}{2}\right)^{2}\right)+\frac{1}{5 c^{7}}\left(\left(1280 b^{9}-2944 b^{7} c^{2}+2288 b^{5} c^{4}-676 b^{3} c^{6}+57 b c^{8}+1280 \sqrt{b^{2}-c^{2}} b^{8}-2304 \sqrt{b^{2}-c^{2}} b^{6} c^{2}+1296 \sqrt{b^{2}-c^{2}} b^{4} c^{4}\right.\right.$
$\left.\left.-236 \sqrt{b^{2}-c^{2}} b^{2} c^{6}+7 \sqrt{b^{2}-c^{2}} c^{8}\right) \tanh \left(\frac{x}{2}\right)\right)+\frac{1}{35 c^{8}}\left(4\left(640 \sqrt{b^{2}-c^{2}} b^{9}-1312 \sqrt{b^{2}-c^{2}} b^{7} c^{2}+896 \sqrt{b^{2}-c^{2}} b^{5} c^{4}-238 \sqrt{b^{2}-c^{2}} b^{3} c^{6}\right.\right.$
$\left.\left.\left.\left.+21 \sqrt{b^{2}-c^{2}} b c^{8}+640 b^{10}-1632 b^{8} c^{2}+1472 b^{6} c^{4}-562 b^{4} c^{6}+85 b^{2} c^{8}-3 c^{10}\right)\right)\right)\right) /\left(c^{6}\left(\tanh \left(\frac{x}{2}\right)^{2}+\frac{2 \sqrt{b^{2}-c^{2}} \tanh \left(\frac{x}{2}\right)}{c}\right.\right.$
$\left.\left.+\frac{2 b \tanh \left(\frac{x}{2}\right)}{c}+\frac{2 \sqrt{b^{2}-c^{2}} b}{c^{2}}+\frac{2 b^{2}}{c^{2}}-1\right)^{3}\left(\tanh \left(\frac{x}{2}\right)+\frac{\sqrt{b^{2}-c^{2}}}{c}+\frac{b}{c}\right)\right)$

Problem 210: Maple result simpler than optimal antiderivative, IF it can be verified!

$$
\int \sqrt{a+b \cosh (x)+c \sinh (x)} \mathrm{d} x
$$

Optimal(type 4, 125 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (b,-\mathrm{I} c)}{2}\right)^{2}} \text { EllipticE }\left(\sin \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (b,-\mathrm{I} c)}{2}\right), \sqrt{2} \sqrt{\frac{\sqrt{b^{2}-c^{2}}}{a+\sqrt{b^{2}-c^{2}}}}\right) \sqrt{a+b \cosh (x)+c \sinh (x)}}{\cos \left(\frac{\mathrm{I} x}{2}-\frac{\arctan (b,-\mathrm{I} c)}{2}\right) \sqrt{\frac{a+b \cosh (x)+c \sinh (x)}{a+\sqrt{b^{2}-c^{2}}}}}
$$

Result(type 3, 313 leaves):
$\left(-b^{2}+c^{2}\right) \cosh (x)$
$\sqrt{b^{2}-c^{2}} \sqrt{\frac{-\sinh (x) b^{2}+\sinh (x) c^{2}+a \sqrt{b^{2}-c^{2}}}{\sqrt{b^{2}-c^{2}}}}$

$$
\begin{aligned}
& +\frac{1}{\left(-\sinh (x) b^{2}+\sinh (x) c^{2}+a \sqrt{b^{2}-c^{2}}\right) \sinh (x)}\left(\sqrt{\frac{\left(-\sinh (x) b^{2}+\sinh (x) c^{2}+a \sqrt{b^{2}-c^{2}}\right) \sinh (x)^{2}}{\sqrt{b^{2}-c^{2}}}} a \ln (1 /\right. \\
& \left(\sqrt{b^{2}-c^{2}} \sqrt{\frac{-\sinh (x) b^{2}+\sinh (x) c^{2}+a \sqrt{b^{2}-c^{2}}}{\sqrt{b^{2}-c^{2}}}}\right)\left(\cosh (x) \sinh (x)\left(-b^{2}+c^{2}\right)+\cosh (x) \sqrt{b^{2}-c^{2}} a\right.
\end{aligned}+\sqrt{\left.\left.\frac{\left(-b^{2}+c^{2}\right) \sinh (x)^{3}}{\sqrt{b^{2}-c^{2}}}+a \sinh (x)^{2} \sqrt{b^{2}-c^{2}} \sqrt{\frac{\left(-b^{2}+c^{2}\right) \sinh (x)}{\sqrt{b^{2}-c^{2}}}+a}\right) \sqrt{b^{2}-c^{2}}\right)}
$$

Problem 211: Result more than twice size of optimal antiderivative.

$$
\int\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 120 leaves, 3 steps):
$\frac{2(c \cosh (x)+b \sinh (x))\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{3 / 2}}{5}+\frac{64\left(b^{2}-c^{2}\right)(c \cosh (x)+b \sinh (x))}{15 \sqrt{b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}}}$
$+\frac{16(c \cosh (x)+b \sinh (x)) \sqrt{b^{2}-c^{2}} \sqrt{b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}}}{15}$
Result(type 3, 517 leaves):
$\frac{-\frac{\left(b^{2}-c^{2}\right)^{3 / 2} \cosh (x)^{3}}{3}-\frac{\left(-2 b^{2}+2 c^{2}\right)\left(-b^{2}+c^{2}\right) \cosh (x)}{\sqrt{b^{2}-c^{2}}}}{\sqrt{3}}$

$$
\begin{aligned}
& \sqrt{-\frac{\sinh (x) b^{2}-\sinh (x) c^{2}-b^{2}+c^{2}}{\sqrt{b^{2}-c^{2}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sqrt{b^{2}-c^{2}} \arctan \left(\frac{\sqrt{\sinh (x) \sqrt{b^{2}-c^{2}}-\sqrt{b^{2}-c^{2}} \cosh (x)}}{\sqrt{-\sqrt{b^{2}-c^{2}} \sinh (x)^{3}+\sqrt{b^{2}-c^{2}} \sinh (x)^{2}}}\right) b^{2}-\sqrt{b^{2}-c^{2}} \arctan \left(\frac{\sqrt{\sinh (x) \sqrt{b^{2}-c^{2}}-\sqrt{b^{2}-c^{2}}} \operatorname{cosh(x)}}{\sqrt{-\sqrt{b^{2}-c^{2}}} \sinh (x)^{3}+\sqrt{b^{2}-c^{2}}} \sinh (x)^{2}\right) ~ c^{2}\right)
\end{aligned}
$$

$$
\left.\sqrt{-\sqrt{b^{2}-c^{2}} \sinh (x)^{2}(-1+\sinh (x))}\right) /\left(2 \sqrt{\sqrt{b^{2}-c^{2}}(-1+\sinh (x))}(-1+\sinh (x)) \sinh (x) \sqrt{-\frac{\sinh (x) b^{2}-\sinh (x) c^{2}-b^{2}+c^{2}}{\sqrt{b^{2}-c^{2}}}}\right)
$$

Problem 212: Attempted integration timed out after 120 seconds.

$$
\int \frac{1}{\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 128 leaves, 4 steps):

$$
\frac{\arctan \left(\frac{\left(b^{2}-c^{2}\right)^{1 / 4} \sinh (x+\mathrm{I} \arctan (b,-\mathrm{I} c)) \sqrt{2}}{2 \sqrt{\sqrt{b^{2}-c^{2}}+\cosh (x+\mathrm{I} \arctan (b,-\mathrm{I} c)) \sqrt{b^{2}-c^{2}}}}\right) \sqrt{2}}{4\left(b^{2}-c^{2}\right)^{3 / 4}}+\frac{c \cosh (x)+b \sinh (x)}{2 \sqrt{b^{2}-c^{2}}\left(b \cosh (x)+c \sinh (x)+\sqrt{b^{2}-c^{2}}\right)^{3 / 2}}
$$

Result(type 1, 1 leaves):???
Problem 213: Result more than twice size of optimal antiderivative.

$$
\int\left(b \cosh (x)+c \sinh (x)-\sqrt{b^{2}-c^{2}}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 82 leaves, 2 steps):

$$
-\frac{8(c \cosh (x)+b \sinh (x)) \sqrt{b^{2}-c^{2}}}{3 \sqrt{b \cosh (x)+c \sinh (x)-\sqrt{b^{2}-c^{2}}}}+\frac{2(c \cosh (x)+b \sinh (x)) \sqrt{b \cosh (x)+c \sinh (x)-\sqrt{b^{2}-c^{2}}}}{3}
$$

Result(type 3, 189 leaves):

$$
\frac{\left(2 b^{2}-2 c^{2}\right) \cosh (x)}{\sqrt{-\frac{\sinh (x) b^{2}-\sinh (x) c^{2}+b^{2}-c^{2}}{\sqrt{b^{2}-c^{2}}}}+\frac{\left.\sqrt{\sqrt{b^{2}-c^{2}}(\sinh (x)+1)} \sinh (x) \sqrt{-\frac{\sinh (x) b^{2}-\sinh (x) c^{2}+b^{2}-c^{2}}{\sqrt{b^{2}-c^{2}} \sinh (x)^{2}(\sinh (x)+1)}}\right)}{\sqrt{b^{2}-c^{2}}}}
$$

Problem 214: Attempted integration timed out after 120 seconds.

$$
\int \frac{1}{\left(b \cosh (x)+c \sinh (x)-\sqrt{b^{2}-c^{2}}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 134 leaves, 4 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\left(b^{2}-c^{2}\right)^{1 / 4} \sinh (x+\mathrm{I} \arctan (b,-\mathrm{I} c)) \sqrt{2}}{2 \sqrt{-\sqrt{b^{2}-c^{2}}+\cosh (x+\mathrm{I} \arctan (b,-\mathrm{I} c)) \sqrt{b^{2}-c^{2}}}}\right) \sqrt{2}}{4\left(b^{2}-c^{2}\right)^{3 / 4}}+\frac{-c \cosh (x)-b \sinh (x)}{2\left(b \cosh (x)+c \sinh (x)-\sqrt{b^{2}-c^{2}}\right)^{3 / 2} \sqrt{b^{2}-c^{2}}}
$$

Result(type 1, 1 leaves):???
Problem 215: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)}{a+b \cosh (x)+c \sinh (x)} \mathrm{d} x
$$

Optimal(type 3, 98 leaves, 4 steps):

$$
-\frac{c x}{b^{2}-c^{2}}+\frac{b \ln (a+b \cosh (x)+c \sinh (x))}{b^{2}-c^{2}}-\frac{2 a c \operatorname{arctanh}\left(\frac{c-(a-b) \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}+c^{2}}}\right)}{\left(b^{2}-c^{2}\right) \sqrt{a^{2}-b^{2}+c^{2}}}
$$

Result(type 3, 428 leaves):
$\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-2 c \tanh \left(\frac{x}{2}\right)-a-b\right) a b}{(b-c)(b+c)(a-b)}-\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-2 c \tanh \left(\frac{x}{2}\right)-a-b\right) b^{2}}{(b-c)(b+c)(a-b)}$

$$
-\frac{2 \arctan \left(\frac{2(a-b) \tanh \left(\frac{x}{2}\right)-2 c}{2 \sqrt{-a^{2}+b^{2}-c^{2}}}\right) c b^{2}}{(b-c)(b+c) \sqrt{-a^{2}+b^{2}-c^{2}}(a-b)}-\frac{4 \ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{4 b-4 c}-\frac{4 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{4 b+4 c}
$$

Problem 217: Result more than twice size of optimal antiderivative.

$$
\int \frac{B \cosh (x)+C \sinh (x)}{(a+b \cosh (x)+c \sinh (x))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 99 leaves, 4 steps):

$$
\frac{2(B b-C c) \operatorname{arctanh}\left(\frac{c-(a-b) \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}+c^{2}}}\right)}{\left(a^{2}-b^{2}+c^{2}\right)^{3 / 2}}+\frac{-B c+b C+a C \cosh (x)+a B \sinh (x)}{\left(a^{2}-b^{2}+c^{2}\right)(a+b \cosh (x)+c \sinh (x))}
$$

Result(type 3, 286 leaves):

$$
\begin{aligned}
& \frac{2\left(-\frac{\left(B a^{2}-B a b+B c^{2}+C a c-C b c\right) \tanh \left(\frac{x}{2}\right)}{a^{3}-a^{2} b-a b^{2}+a c^{2}+b^{3}-c^{2} b}-\frac{B c b+C a^{2}-C b^{2}}{a^{3}-a^{2} b-a b^{2}+a c^{2}+b^{3}-c^{2} b}\right)}{a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-2 c \tanh \left(\frac{x}{2}\right)-a-b}+\frac{2 \arctan \left(\frac{2(a-b) \tanh \left(\frac{x}{2}\right)-2 c}{2 \sqrt{-a^{2}+b^{2}-c^{2}}}\right) B b}{\left(a^{2}-b^{2}+c^{2}\right) \sqrt{-a^{2}+b^{2}-c^{2}}} \\
& -\frac{2 \arctan \left(\frac{2(a-b) \tanh \left(\frac{x}{2}\right)-2 c}{2 \sqrt{-a^{2}+b^{2}-c^{2}}}\right) C c}{\left(a^{2}-b^{2}+c^{2}\right) \sqrt{-a^{2}+b^{2}-c^{2}}}
\end{aligned}
$$

Problem 220: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\cosh (x)^{2}+\sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 3 leaves, 2 steps):

$\arctan (\tanh (x))$

Result(type 3, 115 leaves):

$$
\frac{2 \sqrt{2} \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{-2+2 \sqrt{2}}\right)}{-2+2 \sqrt{2}}-\frac{2 \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{-2+2 \sqrt{2}}\right)}{-2+2 \sqrt{2}}-\frac{2 \sqrt{2} \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{2+2 \sqrt{2}}\right)}{2+2 \sqrt{2}}-\frac{2 \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{2+2 \sqrt{2}}\right)}{2+2 \sqrt{2}}
$$

Problem 221: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\operatorname{sech}(x)^{2}-\tanh (x)^{2}} d x
$$

Optimal(type 3, 15 leaves, 4 steps):

$$
-x+\operatorname{arctanh}(\sqrt{2} \tanh (x)) \sqrt{2}
$$

Result(type 3, 53 leaves):

$$
\sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)-2\right) \sqrt{2}}{4}\right)+\sqrt{2} \operatorname{arctanh}\left(\frac{\left(2 \tanh \left(\frac{x}{2}\right)+2\right) \sqrt{2}}{4}\right)-\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)+\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)
$$

Problem 222: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(\operatorname{coth}(x)^{2}-\operatorname{csch}(x)^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 2 steps):
x
Result (type 3, 7 leaves):

$$
2 \operatorname{arctanh}\left(\tanh \left(\frac{x}{2}\right)\right)
$$

Problem 223: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \sinh (x)+c \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 227 leaves, 7 steps):

$$
\frac{2 c \arctan \left(\frac{\left(2 \mathrm{I} c-\left(\mathrm{I} b+\sqrt{4 a c-b^{2}}\right) \tanh \left(\frac{x}{2}\right)\right) \sqrt{2}}{\left.2 \sqrt{b^{2}-2(a-c) c-\mathrm{I} b \sqrt{4 a c-b^{2}}}\right) \sqrt{2}}\right)}{\sqrt{4 a c-b^{2}} \sqrt{b^{2}-2(a-c) c-\mathrm{I} b \sqrt{4 a c-b^{2}}}}-\frac{2 c \arctan \left(\frac{\left(2 \mathrm{I} c-\mathrm{I} b \tanh \left(\frac{x}{2}\right)+\sqrt{\left.4 a c-b^{2} \tanh \left(\frac{x}{2}\right)\right) \sqrt{2}}\right) \sqrt{2}}{\sqrt{b^{2}-2(a-c) c+\mathrm{I} b \sqrt{4 a c-b^{2}}}}\right)}{\sqrt{4 a c-b^{2}} \sqrt{b^{2}-2(a-c) c+\mathrm{I} b \sqrt{4 a c-b^{2}}}}
$$

Result(type 7, 73 leaves):

$$
\sum_{-R=R o o t O f\left(a_{-} Z^{4}-2 b_{-} Z^{3}+(-2 a+4 c) Z^{2}+2 b _Z+a\right)} \frac{\left(-_{-} R^{2}+1\right) \ln \left(\tanh \left(\frac{x}{2}\right)-{ }_{-} R\right)}{2 R_{-}^{3} a-3 _R^{2} b-2 _R a+4 _R c+b}
$$

Problem 224: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \sinh (x)}{b^{2}-2 a b \sinh (x)+a^{2} \sinh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
\frac{\cosh (x)}{b-a \sinh (x)}
$$

Result(type 3, 35 leaves):

$$
-\frac{2\left(-\frac{a \tanh \left(\frac{x}{2}\right)}{b}+1\right)}{\tanh \left(\frac{x}{2}\right)^{2} b+2 a \tanh \left(\frac{x}{2}\right)-b}
$$

Problem 225: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)}{a+b \cosh (x)+c \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 190 leaves, 6 steps):

Result(type 3, 1261 leaves):

Problem 226: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{2}}{a+b \cosh (x)+c \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 216 leaves, 7 steps):

Result (type 3, 1956 leaves):

Problem 227: Result more than twice size of optimal antiderivative.

Optimal(type 3, 204 leaves, 5 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{b-2 c-\sqrt{-4 a c+b^{2}}} \tanh \left(\frac{x}{2}\right)}{\sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}\right)\left(e+\frac{-e b+2 d c}{\sqrt{-4 a c+b^{2}}}\right)}{\sqrt{b-2 c-\sqrt{-4 a c+b^{2}}} \sqrt{b+2 c-\sqrt{-4 a c+b^{2}}}}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{b-2 c+\sqrt{-4 a c+b^{2}}} \tanh \left(\frac{x}{2}\right)}{\sqrt{b+2 c+\sqrt{-4 a c+b^{2}}}}\right)}{\sqrt{b-2 c+\sqrt{-4 a c}})}
$$

Result (type ?, 2555 leaves): Display of huge result suppressed!
Problem 228: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{3}}{\cosh (x)^{3}+\sinh (x)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 29 leaves, 6 steps):

$$
\frac{x}{2}+\frac{2 \arctan \left(\frac{(1-2 \tanh (x)) \sqrt{3}}{3}\right) \sqrt{3}}{9}+\frac{1}{6(1+\tanh (x))}
$$

Result(type 3, 95 leaves):

$$
\begin{aligned}
& \frac{1}{3\left(1+\tanh \left(\frac{x}{2}\right)\right)^{2}}-\frac{1}{3\left(1+\tanh \left(\frac{x}{2}\right)\right)}+\frac{\ln \left(1+\tanh \left(\frac{x}{2}\right)\right)}{2}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}+\frac{\mathrm{I} \sqrt{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+(\mathrm{I} \sqrt{3}-1) \tanh \left(\frac{x}{2}\right)+1\right)}{9} \\
& \quad-\frac{\mathrm{I} \sqrt{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+(-\mathrm{I} \sqrt{3}-1) \tanh \left(\frac{x}{2}\right)+1\right)}{9}
\end{aligned}
$$

Problem 229: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2} \operatorname{csch}(x) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 4, 89 leaves, 8 steps):

$$
-\frac{2 x^{2} \operatorname{arctanh}\left(\mathrm{e}^{x}\right) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}}-\frac{2 x \operatorname{polylog}\left(2,-\mathrm{e}^{x}\right) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}}+\frac{2 x \operatorname{polylog}\left(2, \mathrm{e}^{x}\right) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}}+\frac{2 \operatorname{polylog}\left(3,-\mathrm{e}^{x}\right) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}}-\frac{2 \operatorname{polylog}\left(3, \mathrm{e}^{x}\right) \operatorname{sech}(x)}{\sqrt{a \operatorname{sech}(x)^{2}}}
$$

Result(type 4, 208 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{x} x^{2} \ln \left(1+\mathrm{e}^{x}\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}-\frac{2 \mathrm{e}^{x} x \operatorname{polylog}\left(2,-\mathrm{e}^{x}\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}+\frac{2 \mathrm{e}^{x} \operatorname{polylog}\left(3,-\mathrm{e}^{x}\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}+\frac{\mathrm{e}^{x} x^{2} \ln \left(-\mathrm{e}^{x}+1\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}+\frac{2 \mathrm{e}^{x} x \operatorname{polylog}\left(2, \mathrm{e}^{x}\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)} \\
& -\frac{2 \mathrm{e}^{x} \operatorname{poly} \log \left(3, \mathrm{e}^{x}\right)}{\sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}
\end{aligned}
$$

Problem 232: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \cosh (x) \sinh (x)} \mathrm{d} x
$$

$$
\begin{aligned}
& \text { Optimal(type 4, } 334 \text { leaves, } 13 \text { steps): } \\
& \frac{x^{3} \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a-\sqrt{4 a^{2}+b^{2}}}\right)}{\sqrt{4 a^{2}+b^{2}}}-\frac{x^{3} \ln \left(1+\frac{b \mathrm{e}^{2 x}}{2 a+\sqrt{4 a^{2}+b^{2}}}\right)}{\sqrt{4 a^{2}+b^{2}}}+\frac{3 x^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a-\sqrt{4 a^{2}+b^{2}}}\right)}{2 \sqrt{4 a^{2}+b^{2}}}-\frac{3 x^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{2 x}}{2 a+\sqrt{4 a^{2}+b^{2}}}\right)}{2 \sqrt{4 a^{2}+b^{2}}} \\
& -\frac{3 x \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{2 x}}{2 a-\sqrt{4 a^{2}+b^{2}}}\right)}{2 \sqrt{4 a^{2}+b^{2}}}+\frac{3 x \operatorname{polylog}\left(3,-\frac{b \mathrm{e}^{2 x}}{2 a+\sqrt{4 a^{2}+b^{2}}}\right)}{2 \sqrt{4 a^{2}+b^{2}}}+\frac{3 \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{2 x}}{2 a-\sqrt{4 a^{2}+b^{2}}}\right)}{4 \sqrt{4 a^{2}+b^{2}}}
\end{aligned}
$$

$$
-\frac{3 \text { polylog }\left(4,-\frac{b \mathrm{e}^{2 x}}{2 a+\sqrt{4 a^{2}+b^{2}}}\right)}{4 \sqrt{4 a^{2}+b^{2}}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{x^{3}}{a+b \cosh (x) \sinh (x)} \mathrm{d} x
$$

Problem 236: Unable to integrate problem.

$$
\int \mathrm{e}^{b x+a} \operatorname{csch}(d x+c) \mathrm{d} x
$$

Optimal(type 5, 46 leaves, 1 step):

$$
\frac{2 \mathrm{e}^{b x+d x+a+c} \text { hypergeom }\left(\left[1, \frac{b+d}{2 d}\right],\left[\frac{3}{2}+\frac{b}{2 d}\right], \mathrm{e}^{2 d x+2 c}\right)}{b+d}
$$

Result(type 8, 15 leaves):

$$
\int \mathrm{e}^{b x+a} \operatorname{csch}(d x+c) \mathrm{d} x
$$

Problem 237: Unable to integrate problem.

$$
\int F^{c(b x+a)} \operatorname{sech}(e x+d)^{n} \mathrm{~d} x
$$

Optimal(type 5, 88 leaves, 2 steps):

$$
\frac{\left(1+\mathrm{e}^{2 e x+2 d}\right)^{n} F^{b c x+a c} \operatorname{hypergeom}\left(\left[n, \frac{e n+b c \ln (F)}{2 e}\right],\left[1+\frac{e n+b c \ln (F)}{2 e}\right],-\mathrm{e}^{2 e x+2 d}\right) \operatorname{sech}(e x+d)^{n}}{e n+b c \ln (F)}
$$

Result(type 8, 20 leaves):

$$
\int F^{c(b x+a)} \operatorname{sech}(e x+d)^{n} \mathrm{~d} x
$$

Problem 244: Result is not expressed in closed-form.

$$
\int \mathrm{e}^{x} \operatorname{sech}(2 x)^{2} \tanh (2 x) \mathrm{d} x
$$

Optimal(type 3, 92 leaves, 13 steps):

$$
-\frac{\mathrm{e}^{5 x}}{\left(1+\mathrm{e}^{4 x}\right)^{2}}-\frac{\mathrm{e}^{x}}{4\left(1+\mathrm{e}^{4 x}\right)}+\frac{\arctan \left(\mathrm{e}^{x} \sqrt{2}-1\right) \sqrt{2}}{16}+\frac{\arctan \left(1+\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{16}-\frac{\ln \left(1+\mathrm{e}^{2 x}-\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{32}+\frac{\ln \left(1+\mathrm{e}^{2 x}+\mathrm{e}^{x} \sqrt{2}\right) \sqrt{2}}{32}
$$

Result(type 7, 43 leaves):

$$
\left.-\frac{\mathrm{e}^{x}\left(5 \mathrm{e}^{4 x}+1\right)}{4\left(1+\mathrm{e}^{4 x}\right)^{2}}+4 \sum_{-R=\text { RootOf }\left(16777216 Z^{4}+1\right)^{-}} R \ln \left(\mathrm{e}^{x}+64_{-} R\right)\right)
$$

Problem 248: Unable to integrate problem.

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a) \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 5, 103 leaves, 4 steps):

$$
\frac{4 \mathrm{e}^{2 a+c+(2 b+d) x} \text { hypergeom }\left(\left[2,1+\frac{d}{2 b}\right],\left[2+\frac{d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{2 b+d}-\frac{8 \mathrm{e}^{2 a+c+(2 b+d) x} \text { hypergeom }\left(\left[3,1+\frac{d}{2 b}\right],\left[2+\frac{d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{2 b+d}
$$

Result(type 8, 23 leaves):

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a) \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Problem 250: Unable to integrate problem.

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a)^{2} \operatorname{csch}(b x+a) \mathrm{d} x
$$

Optimal(type 5, 94 leaves, 6 steps):

$$
-\frac{3 \mathrm{e}^{-a+c-(b-d) x}}{2(b-d)}+\frac{\mathrm{e}^{a+c+(b+d) x}}{2(b+d)}+\frac{2 \mathrm{e}^{-a+c-(b-d) x} \text { hypergeom }\left(\left[1, \frac{-b+d}{2 b}\right],\left[\frac{b+d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{b-d}
$$

Result(type 8, 23 leaves):

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a)^{2} \operatorname{csch}(b x+a) \mathrm{d} x
$$

Problem 251: Unable to integrate problem.

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a)^{2} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 5, 142 leaves, 5 steps):
$-\frac{2 \mathrm{e}^{a+c+(b+d) x} \text { hypergeom }\left(\left[1, \frac{b+d}{2 b}\right],\left[\frac{3 b+d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{b+d}+\frac{8 \mathrm{e}^{a+c+(b+d) x} \operatorname{hypergeom}\left(\left[2, \frac{b+d}{2 b}\right],\left[\frac{3 b+d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{b+d}$

$$
-\frac{8 \mathrm{e}^{a+c+(b+d) x} \text { hypergeom }\left(\left[3, \frac{b+d}{2 b}\right],\left[\frac{3 b+d}{2 b}\right], \mathrm{e}^{2 b x+2 a}\right)}{b+d}
$$

Result(type 8, 25 leaves):

$$
\int \mathrm{e}^{d x+c} \cosh (b x+a)^{2} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Problem 253: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}}{1+\tanh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 3 leaves, 2 steps):
$\arctan (\tanh (x))$
Result(type 3, 115 leaves):

$$
\frac{2 \sqrt{2} \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{-2+2 \sqrt{2}}\right)}{-2+2 \sqrt{2}}-\frac{2 \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{-2+2 \sqrt{2}}\right)}{-2+2 \sqrt{2}}-\frac{2 \sqrt{2} \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{2+2 \sqrt{2}}\right)}{2+2 \sqrt{2}}-\frac{2 \arctan \left(\frac{2 \tanh \left(\frac{x}{2}\right)}{2+2 \sqrt{2}}\right)}{2+2 \sqrt{2}}
$$

Problem 254: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}}{2+2 \tanh (x)+\tanh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 5 leaves, 3 steps):

$$
\arctan (1+\tanh (x))
$$

Result(type 3, 41 leaves):

$$
\frac{\mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+(1-\mathrm{I}) \tanh \left(\frac{x}{2}\right)+1\right)}{2}-\frac{\mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+(1+\mathrm{I}) \tanh \left(\frac{x}{2}\right)+1\right)}{2}
$$

Problem 255: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}}{11-5 \tanh (x)+5 \tanh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 17 leaves, 3 steps):

$$
-\frac{2 \arctan \left(\frac{\sqrt{195}(1-2 \tanh (x))}{39}\right) \sqrt{195}}{195}
$$

Result(type 3, 61 leaves):

$$
\frac{\mathrm{I} \sqrt{195} \ln \left(11 \tanh \left(\frac{x}{2}\right)^{2}+(-\mathrm{I} \sqrt{195}-5) \tanh \left(\frac{x}{2}\right)+11\right)}{195}-\frac{\mathrm{I} \sqrt{195} \ln \left(11 \tanh \left(\frac{x}{2}\right)^{2}+(\mathrm{I} \sqrt{195}-5) \tanh \left(\frac{x}{2}\right)+11\right)}{195}
$$

Problem 256: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}(a+b \tanh (x))}{c+d \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 28 leaves, 3 steps):

$$
-\frac{(-d a+c b) \ln (c+d \tanh (x))}{d^{2}}+\frac{b \tanh (x)}{d}
$$

Result(type 3, 99 leaves):
$\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a}{d}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) c b}{d^{2}}+\frac{2 \tanh \left(\frac{x}{2}\right) b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a}{d}$

$$
+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) c b}{d^{2}}
$$

Problem 257: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}(a+b \tanh (x))^{2}}{c+d \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 51 leaves, 3 steps):

$$
\frac{(-d a+c b)^{2} \ln (c+d \tanh (x))}{d^{3}}-\frac{b(-d a+c b) \tanh (x)}{d^{2}}+\frac{(a+b \tanh (x))^{2}}{2 d}
$$

Result(type 3, 250 leaves):
$\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a^{2}}{d}-\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a c b}{d^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) b^{2} c^{2}}{d^{3}}$

$$
\begin{aligned}
& +\frac{4 \tanh \left(\frac{x}{2}\right)^{3} a b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{3} b^{2} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{2 b^{2} \tanh \left(\frac{x}{2}\right)^{2}}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{4 \tanh \left(\frac{x}{2}\right) a b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{2 \tanh \left(\frac{x}{2}\right) b^{2} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{2}}{d}+\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a c b}{d^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) b^{2} c^{2}}{d^{3}}
\end{aligned}
$$

Problem 258: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}(a+b \tanh (x))^{3}}{c+d \tanh (x)} \mathrm{d} x
$$

Optimal(type 3, 74 leaves, 3 steps):

$$
-\frac{(-d a+c b)^{3} \ln (c+d \tanh (x))}{d^{4}}+\frac{b(-d a+c b)^{2} \tanh (x)}{d^{3}}-\frac{(-d a+c b)(a+b \tanh (x))^{2}}{2 d^{2}}+\frac{(a+b \tanh (x))^{3}}{3 d}
$$

Result(type 3, 541 leaves):
$\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a^{3}}{d}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a^{2} b c}{d^{2}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) a b^{2} c^{2}}{d^{3}}$

$$
\begin{aligned}
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} c+2 \tanh \left(\frac{x}{2}\right) d+c\right) b^{3} c^{3}}{d^{4}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{5} a^{2} b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{6 \tanh \left(\frac{x}{2}\right)^{5} a b^{2} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{2 \tanh \left(\frac{x}{2}\right)^{5} b^{3} c^{2}}{d^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{4} a b^{2}}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}} \\
& -\frac{2 \tanh \left(\frac{x}{2}\right)^{4} b^{3} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{12 \tanh \left(\frac{x}{2}\right)^{3} a^{2} b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{12 \tanh \left(\frac{x}{2}\right)^{3} a b^{2} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{4 \tanh \left(\frac{x}{2}\right)^{3} b^{3} c^{2}}{d^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{8 \tanh \left(\frac{x}{2}\right)^{3} b^{3}}{3 d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}} \\
& +\frac{6 \tanh \left(\frac{x}{2}\right)^{2} a b^{2}}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{2} b^{3} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{6 \tanh \left(\frac{x}{2}\right) a^{2} b}{d\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{6 \tanh \left(\frac{x}{2}\right) a b^{2} c}{d^{2}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}+\frac{2 \tanh \left(\frac{x}{2}\right) b^{3} c^{2}}{d^{3}\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{3}}{d}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{2} b c}{d^{2}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a b^{2} c^{2}}{d^{3}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) b^{3} c^{3}}{d^{4}}
\end{aligned}
$$

Problem 260: Unable to integrate problem.

$$
\int \frac{\operatorname{sech}(x)^{2}}{\sqrt{4-\operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 8 leaves, 2 steps):

$$
\operatorname{arcsinh}\left(\frac{\tanh (x) \sqrt{3}}{3}\right)
$$

Result(type 8, 17 leaves):

$$
\int \frac{\operatorname{sech}(x)^{2}}{\sqrt{4-\operatorname{sech}(x)^{2}}} \mathrm{~d} x
$$

Problem 261: Unable to integrate problem.

$$
\int \frac{\operatorname{sech}(x)^{2}}{\sqrt{-4+\tanh (x)^{2}}} d x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
\operatorname{arctanh}\left(\frac{\tanh (x)}{\sqrt{-4+\tanh (x)^{2}}}\right)
$$

Result(type 8, 15 leaves):

$$
\int \frac{\operatorname{sech}(x)^{2}}{\sqrt{-4+\tanh (x)^{2}}} d x
$$

Problem 267: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{coth}(x))^{2} \operatorname{csch}(x)^{2}}{c+d \operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 51 leaves, 3 steps):

$$
\frac{b(-d a+c b) \operatorname{coth}(x)}{d^{2}}-\frac{(a+b \operatorname{coth}(x))^{2}}{2 d}-\frac{(-d a+c b)^{2} \ln (c+d \operatorname{coth}(x))}{d^{3}}
$$

Result(type 3, 202 leaves):

$$
\begin{aligned}
& -\frac{b^{2} \tanh \left(\frac{x}{2}\right)^{2}}{8 d}-\frac{b \tanh \left(\frac{x}{2}\right) a}{d}+\frac{b^{2} \tanh \left(\frac{x}{2}\right) c}{2 d^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) a^{2}}{d}+\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) a c b}{d^{2}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) b^{2} c^{2}}{d^{3}}-\frac{b^{2}}{8 d \tanh \left(\frac{x}{2}\right)^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right) a^{2}}{d}-\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)\right) a c b}{d^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right) b^{2} c^{2}}{d^{3}} \\
& -\frac{b a}{d \tanh \left(\frac{x}{2}\right)}+\frac{b^{2} c}{2 d^{2} \tanh \left(\frac{x}{2}\right)}
\end{aligned}
$$

Problem 268: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{coth}(x))^{3} \operatorname{csch}(x)^{2}}{c+d \operatorname{coth}(x)} \mathrm{d} x
$$

Optimal(type 3, 74 leaves, 3 steps):

$$
-\frac{b(-d a+c b)^{2} \operatorname{coth}(x)}{d^{3}}+\frac{(-d a+c b)(a+b \operatorname{coth}(x))^{2}}{2 d^{2}}-\frac{(a+b \operatorname{coth}(x))^{3}}{3 d}+\frac{(-d a+c b)^{3} \ln (c+d \operatorname{coth}(x))}{d^{4}}
$$

Result(type 3, 377 leaves):
$-\frac{b^{3} \tanh \left(\frac{x}{2}\right)^{3}}{24 d}-\frac{3 b^{2} \tanh \left(\frac{x}{2}\right)^{2} a}{8 d}+\frac{b^{3} \tanh \left(\frac{x}{2}\right)^{2} c}{8 d^{2}}-\frac{3 b \tanh \left(\frac{x}{2}\right) a^{2}}{2 d}+\frac{3 b^{2} \tanh \left(\frac{x}{2}\right) a c}{2 d^{2}}-\frac{b^{3} \tanh \left(\frac{x}{2}\right) c^{2}}{2 d^{3}}-\frac{b^{3} \tanh \left(\frac{x}{2}\right)}{8 d}$

$$
\begin{aligned}
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) a^{3}}{d}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) a^{2} b c}{d^{2}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) a b^{2} c^{2}}{d^{3}} \\
& +\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} d+2 c \tanh \left(\frac{x}{2}\right)+d\right) b^{3} c^{3}}{d^{4}}-\frac{b^{3}}{24 d \tanh \left(\frac{x}{2}\right)^{3}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right) a^{3}}{d}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)\right) a^{2} b c}{d^{2}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)\right) a b^{2} c^{2}}{d^{3}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right) b^{3} c^{3}}{d^{4}}-\frac{3 b a^{2}}{2 d \tanh \left(\frac{x}{2}\right)}+\frac{3 b^{2} a c}{2 d^{2} \tanh \left(\frac{x}{2}\right)}-\frac{b^{3} c^{2}}{2 d^{3} \tanh \left(\frac{x}{2}\right)}-\frac{b^{3}}{8 d \tanh \left(\frac{x}{2}\right)}-\frac{3 b^{2} a}{8 d \tanh \left(\frac{x}{2}\right)^{2}}+\frac{b^{3} c}{8 d^{2} \tanh \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Problem 273: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (b x+a)^{3}-\sinh (b x+a)^{3}}{\cosh (b x+a)^{3}+\sinh (b x+a)^{3}} d x
$$

Optimal(type 3, 40 leaves, 5 steps):

$$
-\frac{4 \arctan \left(\frac{(1-2 \tanh (b x+a)) \sqrt{3}}{3}\right) \sqrt{3}}{9 b}-\frac{1}{3 b(1+\tanh (b x+a))}
$$

Result(type 3, 119 leaves):

$$
\begin{aligned}
& -\frac{2}{3 b\left(\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1\right)^{2}}+\frac{2}{3 b\left(\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1\right)}+\frac{2 \mathrm{I} \sqrt{3} \ln \left(\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}+(-\mathrm{I} \sqrt{3}-1) \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1\right)}{9 b} \\
& -\frac{2 \mathrm{I} \sqrt{3} \ln \left(\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}+(\mathrm{I} \sqrt{3}-1) \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1\right)}{9 b}
\end{aligned}
$$

Problem 275: Result more than twice size of optimal antiderivative.

$$
\int \frac{-\operatorname{csch}(b x+a)+\operatorname{sech}(b x+a)}{\operatorname{csch}(b x+a)+\operatorname{sech}(b x+a)} \mathrm{d} x
$$

Optimal(type 3, 14 leaves, 2 steps):

$$
\frac{1}{b(1+\tanh (b x+a))}
$$

Result(type 3, 35 leaves):

$$
\frac{\frac{2}{\left(\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1\right)^{2}}-\frac{2}{\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)+1}}{b}
$$

Problem 276: Result more than twice size of optimal antiderivative.

$$
\int \frac{-\operatorname{csch}(b x+a)^{4}+\operatorname{sech}(b x+a)^{4}}{\operatorname{csch}(b x+a)^{4}+\operatorname{sech}(b x+a)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 43 leaves, 6 steps):

$$
-\frac{\arctan (\sqrt{2} \tanh (b x+a)-1) \sqrt{2}}{2 b}-\frac{\arctan (1+\sqrt{2} \tanh (b x+a)) \sqrt{2}}{2 b}
$$

Result(type 3, 137 leaves):
$\frac{\mathrm{I} \sqrt{2} \ln \left(2 \mathrm{I} \sqrt{2} \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{3}+\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{4}+2 \mathrm{I} \sqrt{2} \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)-2 \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}+1\right)}{4 b}$

$$
-\frac{\mathrm{I} \sqrt{2} \ln \left(-2 \mathrm{I} \sqrt{2} \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{3}+\tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{4}-2 \mathrm{I} \sqrt{2} \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)-2 \tanh \left(\frac{a}{2}+\frac{b x}{2}\right)^{2}+1\right)}{4 b}
$$

Summary of Integration Test Results
276 integration problems

A - 159 optimal antiderivatives
B - 76 more than twice size of optimal antiderivatives
C - 1 unnecessarily complex antiderivatives
D - 38 unable to integrate problems
E - 2 integration timeouts

[^0]: Result(type 8, 19 leaves):

[^1]: Problem 76: Result more than twice size of optimal antiderivative.

[^2]: Problem 168: Result more than twice size of optimal antiderivative.

